

Welcome to django-comments-xtd

A Django pluggable application that adds comments to your project. It extends
the once official Django Comments Framework [https://pypi.python.org/pypi/django-contrib-comments].

Note

This documentation represents the current version, v2.6.2, of
django-comments-xtd. For old versions of the documentation:

	v2.5.1: https://django-comments-xtd.readthedocs.io/en/2.5.1/

	v2.4.3: https://django-comments-xtd.readthedocs.io/en/2.4.3/

	v2.3.1: https://django-comments-xtd.readthedocs.io/en/2.3.1/

	v2.2.1: https://django-comments-xtd.readthedocs.io/en/2.2.1/

	v2.1.0: https://django-comments-xtd.readthedocs.io/en/2.1.0/

	v2.0.10: https://django-comments-xtd.readthedocs.io/en/2.0.10/

	v1.7.1: https://django-comments-xtd.readthedocs.io/en/1.7.1/

	v1.6.7: https://django-comments-xtd.readthedocs.io/en/1.6.7/

	v1.5.1: https://django-comments-xtd.readthedocs.io/en/1.5.1/

Features

	Thread support, so comments can be nested.

	Customizable maximum thread level, either for all models or on a per
app.model basis.

	Optional notifications on follow-up comments via email.

	Mute links to allow cancellation of follow-up notifications.

	Comment confirmation via email when users are not authenticated.

	Comments hit the database only after they have been confirmed.

	Registered users can like/dislike comments and can suggest comments removal.

	Template tags to list/render the last N comments posted to any given list of
app.model pairs.

	Emails sent through threads (can be disable to allow other solutions, like a
Celery app).

	Fully functional JavaScript plugin using ReactJS, jQuery, Bootstrap,
Remarkable and MD5.

[image: _images/cover.png]

Getting started

Start with these documents to get you up and running:

	Quick start guide

	Tutorial
	Introduction

	Preparation

	Configuration

	Comments tags

	Moderation

	Threads

	Flags

	Markdown

	JavaScript plugin

	Final notes

	Demo projects
	Setup

	Simple project

	Custom project

	Comp project

Advanced Use

Once you’ve got django-comments-xtd working, you may want to know more about
specific features, or check out the use cases to see how others customize it.

	Control logic

	Web API

	JavaScript plugin

	Filters and template tags

	Migrating to django-comments-xtd

	Customizing django-comments-xtd

	Internationalization

	Settings

	Templates

	Use cases

Quick start guide

To get started using django-comments-xtd follow these steps:

	pip install django-comments-xtd

	Enable the “sites” framework [http://docs.djangoproject.com/en/3.1/_objects/ref/contrib/sites/#enabling-the-sites-framework] by adding 'django.contrib.sites' to INSTALLED_APPS [http://docs.djangoproject.com/en/3.1/_objects/ref/settings/#std:setting-INSTALLED_APPS] and defining SITE_ID [http://docs.djangoproject.com/en/3.1/_objects/ref/settings/#std:setting-SITE_ID]. Visit the admin site and be sure that the domain field of the Site instance points to the correct domain (localhost:8000 when running the default development server), as it will be used to create comment verification URLs, follow-up cancellations, etc.

	Add 'django_comments_xtd' and 'django_comments', in that order, to INSTALLED_APPS [http://docs.djangoproject.com/en/3.1/_objects/ref/settings/#std:setting-INSTALLED_APPS].

	Set the COMMENTS_APP [https://django-contrib-comments.readthedocs.io/en/latest/settings.html#std:setting-COMMENTS_APP] setting to 'django_comments_xtd'.

	Set the COMMENTS_XTD_MAX_THREAD_LEVEL to N, being N the maximum level of threading up to which comments will be nested in your project.

0: No nested comments:
Comment (level 0)
1: Nested up to level one:
Comment (level 0)
|-- Comment (level 1)
2: Nested up to level two:
Comment (level 0)
|-- Comment (level 1)
|-- Comment (level 2)
COMMENTS_XTD_MAX_THREAD_LEVEL = 2

The thread level can also be established on a per <app>.<model> basis by using the COMMENTS_XTD_MAX_THREAD_LEVEL_BY_APP_MODEL setting. Use it to establish different maximum threading levels for each model. ie: no nested comments for quotes, up to thread level 2 for blog stories, etc.

	Set the COMMENTS_XTD_CONFIRM_EMAIL to True to require comment confirmation by email for no logged-in users.

	Run manage.py migrate to create the tables.

	Add the URLs of the comments-xtd app to your project’s urls.py:

urlpatterns = [
 ...
 url(r'^comments/', include('django_comments_xtd.urls')),
 ...
]

	Customize your project’s email settings:

EMAIL_HOST = "smtp.mail.com"
EMAIL_PORT = "587"
EMAIL_HOST_USER = "alias@mail.com"
EMAIL_HOST_PASSWORD = "yourpassword"
DEFAULT_FROM_EMAIL = "Helpdesk <helpdesk@yourdomain>"

	To allow a quick start django-comments-xtd makes use of twitter-bootstrap [https://getbootstrap.com]. From django-comments-xtd v2.3 on it uses Twitter-Bootstrap v4. From django-comments-xtd v1.7.1 to v2.2 it uses Twitter-Bootstrap v3. If you want to build your own templates, use the comments [https://django-contrib-comments.readthedocs.io/en/latest/quickstart.html#comment-template-tags] templatetag module, provided by the django-comments [https://django-contrib-comments.readthedocs.io/en/latest/index.html] app. Create a comments directory in your templates directory and copy the templates you want to customise from the Django Comments Framework. The following are the most important:

	comments/list.html, used by the render_comments_list templatetag.

	comments/form.html, used by the render_comment_form templatetag.

	comments/preview.html, used to preview the comment or when there are errors submitting it.

	comments/posted.html, which gets rendered after the comment is sent.

	Add extra settings to control comments in your project. Check the available settings in the Django Comments Framework [https://django-contrib-comments.readthedocs.io/en/latest/settings.html#settings-comments] and in the django-comments-xtd app.

These are the steps to quickly start using django-comments-xtd. Follow to the next page, the Tutorial, to read a detailed guide that takes everything into account. In addition to the tutorial, the Demo projects implement several commenting applications.

Tutorial

This tutorial guides you through the steps to use every feature of
django-comments-xtd together with the Django Comments Framework [https://github.com/django/django-contrib-comments]. The Django project
used throughout the tutorial is available to download [https://github.com/danirus/django-comments-xtd/raw/master/example/tutorial.tar.gz]. Following the tutorial will take
about an hour, and it is highly recommended to get a comprehensive
understanding of django-comments-xtd.

Table of Contents

	Introduction

	Preparation

	Configuration

	Comment confirmation

	Comments tags

	Moderation

	Disallow black listed domains

	Moderate on bad words

	Threads

	Different max thread levels

	Flags

	Commenting options

	Removal suggestion

	Getting notifications

	Liked it, Disliked it

	Show the list of users

	Markdown

	JavaScript plugin

	Enable Web API

	Enable app.model options

	The i18n JavaScript Catalog

	Load the plugin

	Final notes

Introduction

Through the following sections the tutorial will cover the creation of a
simple blog with stories to which we will add comments, exercising each and
every feature provided by both, django-comments and django-comments-xtd,
from comment post verification by mail to comment moderation and nested
comments.

Preparation

Before we install any package we will set up a virtualenv and install
everything we need in it.

$ mkdir ~/django-comments-xtd-tutorial
$ cd ~/django-comments-xtd-tutorial
$ virtualenv venv
$ source venv/bin/activate
(venv)$ pip install django-comments-xtd
(venv)$ wget https://github.com/danirus/django-comments-xtd/raw/master/example/tutorial.tar.gz
(venv)$ tar -xvzf tutorial.tar.gz
(venv)$ cd tutorial

By installing django-comments-xtd we install all its dependencies, Django and
django-contrib-comments among them. So we are ready to work on the project.
Take a look at the content of the tutorial directory, it contains:

	A blog app with a Post model. It uses two generic class-based views
to list the posts and show a post in detail.

	The templates directory, with a base.html and home.html, and
the templates for the blog app: blog/post_list.html and
blog/post_detail.html.

	The static directory with a css/bootstrap.min.css file (this file
is a static asset available, when the app is installed, under the path
django_comments_xtd/css/bootstrap.min.css).

	The tutorial directory containing the settings and urls modules.

	And a fixtures directory with data files to create the admin superuser
(with admin password), the default site and some blog posts.

Let’s finish the initial setup, load the fixtures and run the development
server:

(venv)$ python manage.py migrate
(venv)$ python manage.py loaddata fixtures/*.json
(venv)$ python manage.py runserver

Head to http://localhost:8000 and visit the tutorial site.

Note

Remember to implement the get_absolute_url in the model class whose
objects you want to receive comments, like the class Post in this
tutorial. It is so because the permanent URL of each comment uses the
shortcut view of django.contrib.contenttypes which in turn uses
the get_absolute_url method.

Configuration

Now that the project is running we are ready to add comments. Edit the settings
module, tutorial/settings.py, and make the following changes:

INSTALLED_APPS = [
 ...
 'django_comments_xtd',
 'django_comments',
 'blog',
]
...
COMMENTS_APP = 'django_comments_xtd'

Either enable sending mail messages to the console:
EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

Or set up the EMAIL_* settings so that Django can send emails:
EMAIL_HOST = "smtp.mail.com"
EMAIL_PORT = "587"
EMAIL_HOST_USER = "alias@mail.com"
EMAIL_HOST_PASSWORD = "yourpassword"
EMAIL_USE_TLS = True
DEFAULT_FROM_EMAIL = "Helpdesk <helpdesk@yourdomain>"

Edit the urls module of the project, tutorial/tutorial/urls.py and mount
the URL patterns of django_comments_xtd in the path /comments/. The urls
installed with django_comments_xtd include django_comments’ urls too:

from django.urls import include, path

urlpatterns = [
 ...
 path(r'comments/', include('django_comments_xtd.urls')),
 ...
]

Now let Django create the tables for the two new applications:

$ python manage.py migrate

Be sure that the domain field of the Site instance points to the correct
domain, which for the development server is expected to be localhost:8000.
The value is used to create comment verifications, follow-up cancellations,
etc. Edit the site instance in the admin interface in case you were using a
different value.

Comment confirmation

Before we go any further we need to set up the COMMENTS_XTD_SALT
setting. This setting plays an important role during the comment confirmation
by mail. It helps obfuscating the comment before the user approves its
publication.

It is so because django-comments-xtd does not store comments in the server
until they have been confirmed. This way there is little to none possible
comment spam flooding in the database. Comments are encoded in URLs and sent
for confirmation by mail. Only when the user clicks the confirmation URL the
comment lands in the database.

This behaviour is disabled for authenticated users, and can be disabled for
anonymous users too by simply setting COMMENTS_XTD_CONFIRM_EMAIL to
False.

Now let’s append the following entries to the tutorial settings module:

To help obfuscating comments before they are sent for confirmation.
COMMENTS_XTD_SALT = (b"Timendi causa est nescire. "
 b"Aequam memento rebus in arduis servare mentem.")

Source mail address used for notifications.
COMMENTS_XTD_FROM_EMAIL = "noreply@example.com"

Contact mail address to show in messages.
COMMENTS_XTD_CONTACT_EMAIL = "helpdesk@example.com"

Comments tags

Next step consist of editing blog/post_detail.html and loading the
comments templatetag module after the extends tag:

{% extends "base.html" %}
{% load comments %}

Now we will change the blog post detail template to:

	Show the number of comments posted to the blog story,

	List the comments already posted, and

	Show the comment form, so that comments can be sent.

By using the get_comment_count [https://django-contrib-comments.readthedocs.io/en/latest/quickstart.html#std:templatetag-get_comment_count] tag we will show the number of comments
posted. Change the code around the link element to make it look as follows:

{% get_comment_count for object as comment_count %}
<div class="py-4 text-center">
 Back to the post list
 ⋅
 {{ comment_count }} comment{{ comment_count|pluralize }}
 ha{{ comment_count|pluralize:"s,ve" }} been posted.
</div>

Now let’s add the code to list the comments posted to the story. We can make
use of two template tags, render_comment_list [https://django-contrib-comments.readthedocs.io/en/latest/quickstart.html#std:templatetag-render_comment_list] and
get_comment_list [https://django-contrib-comments.readthedocs.io/en/latest/quickstart.html#std:templatetag-get_comment_list]. The former renders a template with the comments
while the latter put the comment list in a variable in the context of the
template.

When using the first, render_comment_list [https://django-contrib-comments.readthedocs.io/en/latest/quickstart.html#std:templatetag-render_comment_list], with a blog.post object,
Django will look for the template list.html in the following directories:

comments/blog/post/list.html
comments/blog/list.html
comments/list.html

Both, django-contrib-comments and django-comments-xtd, provide the last template
of the list, comments/list.html. The one provided within
django-comments-xtd comes with styling based on twitter-bootstrap [http://getbootstrap.com].

Django will use the first template found depending on the order in which
applications are listed in INSTALLED_APPS [http://docs.djangoproject.com/en/3.1/_objects/ref/settings/#std:setting-INSTALLED_APPS]. In this tutorial
django-comments-xtd is listed first and therefore its comment/list.html
template will be found first.

Let’s modify the blog/post_detail.html template to make use of the
render_comment_list [https://django-contrib-comments.readthedocs.io/en/latest/quickstart.html#std:templatetag-render_comment_list]. Add the following code at the end of the page,
before the endblock tag:

{% if comment_count %}
<hr/>
<div class="comments">
 {% render_comment_list for object %}
</div>
{% endif %}

Below the list of comments we want to display the comment form. There are two
template tags available for that purpose, the render_comment_form [https://django-contrib-comments.readthedocs.io/en/latest/quickstart.html#std:templatetag-render_comment_form] and
the get_comment_form [https://django-contrib-comments.readthedocs.io/en/latest/quickstart.html#std:templatetag-get_comment_form]. The former renders a template with the comment
form while the latter puts the form in the context of the template giving more
control over the fields.

We will use the first tag, render_comment_form [https://django-contrib-comments.readthedocs.io/en/latest/quickstart.html#std:templatetag-render_comment_form]. Again, add the
following code before the endblock tag:

{% if object.allow_comments %}
<div class="card card-block mb-5">
 <div class="card-body">
 <h4 class="card-title text-center pb-3">Post your comment</h4>
 {% render_comment_form for object %}
 </div>
</div>
{% endif %}

Note

The {% if object.allow_comments %} and corresponding {% endif %} are not necessary in your code. I use it in this tutorial (and in the demo sites) as a way to disable comments whenever the author of a blog post decides so. It has been mentioned here [https://github.com/danirus/django-comments-xtd/issues/108] too.

Finally, before completing this first set of changes, we could show the number
of comments along with post titles in the blog’s home page. For this we have to
edit blog/post_list.html and make the following changes:

{% extends "base.html" %}
{% load comments %}

...
 {% for object in object_list %}
 ...
 {% get_comment_count for object as comment_count %}
 <p class="date">Published {{ object.publish }}
 {% if comment_count %}
 ⋅ {{ comment_count }} comment{{ comment_count|pluralize }}
 {% endif %}
 </p>
 ...
 {% endfor %}

Now we are ready to send comments. If you are logged in in the admin site, your
comments won’t need to be confirmed by mail. To test the confirmation URL do
logout of the admin interface. Bear in mind that EMAIL_BACKEND [http://docs.djangoproject.com/en/3.1/_objects/ref/settings/#std:setting-EMAIL_BACKEND] is set
up to send mail messages to the console, so look in the console after you post
the comment and find the first long URL in the message. To confirm the comment
copy the link and paste it in the location bar of the browser.

[image: _images/comments-enabled.png]
The setting COMMENTS_XTD_MAX_THREAD_LEVEL is 0 by default, which
means comments can not be nested. Later in the threads section we will enable
nested comments. Now we will set up comment moderation.

Moderation

One of the differences between django-comments-xtd and other commenting
applications is the fact that by default it requires comment confirmation by
email when users are not logged in, a very effective feature to discard unwanted
comments. However there might be cases in which you would prefer a different
approach. Django Comments Framework comes with moderation capabilities [http://django-contrib-comments.readthedocs.io/en/latest/moderation.html]
included upon which you can build your own comment filtering.

Comment moderation is often established to fight spam, but may be used for other
purposes, like triggering actions based on comment content, rejecting comments
based on how old is the subject being commented and whatnot.

In this section we want to set up comment moderation for our blog application,
so that comments sent to a blog post older than a year will be automatically
flagged for moderation. Also we want Django to send an email to registered
MANAGERS [http://docs.djangoproject.com/en/3.1/_objects/ref/settings/#std:setting-MANAGERS] of the project when the comment is flagged.

Let’s start adding our email address to the MANAGERS [http://docs.djangoproject.com/en/3.1/_objects/ref/settings/#std:setting-MANAGERS] in the
tutorial/settings.py module:

MANAGERS = (
 ('Joe Bloggs', 'joe.bloggs@example.com'),
)

Now we will create a new Moderator class that inherits from Django Comments
Frammework’s CommentModerator. This class enables moderation by defining a
number of class attributes. Read more about it in moderation options [https://django-contrib-comments.readthedocs.io/en/latest/moderation.html#moderation-options], in the official documentation of the Django Comments
Framework.

We will also register our Moderator class with the django-comments-xtd’s
moderator object. We use django-comments-xtd’s object instead of
django-contrib-comments’ because we still want to have confirmation by email
for non-registered users, nested comments, follow-up notifications, etc.

Let’s add those changes to the blog/model.py file:

...
Append these imports below the current ones.
from django_comments.moderation import CommentModerator
from django_comments_xtd.moderation import moderator

...

Add this code at the end of the file.
class PostCommentModerator(CommentModerator):
 email_notification = True
 auto_moderate_field = 'publish'
 moderate_after = 365

moderator.register(Post, PostCommentModerator)

That makes it, moderation is ready. Visit any of the blog posts with a
publish datetime older than a year and try to send a comment. After
confirming the comment you will see the django_comments_xtd/moderated.html
template, and your comment will be put on hold for approval.

If on the other hand you send a comment to a blog post created within the last
year your comment will not be put in moderation. Give it a try as a logged in
user and as an anonymous user.

When sending a comment as a logged-in user the comment won’t have to be
confirmed and will be put in moderation immediately. However, when you send it
as an anonymous user the comment will have to be confirmed by clicking on the
confirmation link, immediately after that the comment will be put on hold
pending for approval.

In both cases, due to the attribute email_notification = True above, all
mail addresses listed in the MANAGERS [http://docs.djangoproject.com/en/3.1/_objects/ref/settings/#std:setting-MANAGERS] setting will receive a
notification about the reception of a new comment. If you did not received
such message, you might need to review your email settings, or the console
output. Read about the mail settings above in the Configuration section.
The mail message received is based on the
comments/comment_notification_email.txt template provided with
django-comments-xtd.

A last note on comment moderation: comments pending for moderation have to be
reviewed and eventually approved. Don’t forget to visit the comments-xtd app in
the admin [http://localhost:8000/admin/] interface. Filter comments by is public: No and is removed: No.
Tick the box of those you want to approve, choose Approve selected comments
in the action dropdown, at the top left of the comment list, and click on
the Go button.

Disallow black listed domains

In case you wanted to disable comment confirmation by mail you might want to
set up some sort of control to reject spam.

This section goes through the steps to disable comment confirmation while
enabling a comment filtering solution based on Joe Wein’s blacklist [http://www.joewein.net/spam/blacklist.htm] of
spamming domains. We will also add a moderation function that will put in
moderation comments containing badwords [https://gist.github.com/ryanlewis/a37739d710ccdb4b406d].

Let us first disable comment confirmation. Edit the tutorial/settings.py
file and add:

COMMENTS_XTD_CONFIRM_EMAIL = False

django-comments-xtd comes with a Moderator class that inherits from
CommentModerator and implements a method allow that will do the
filtering for us. We just have to change blog/models.py and replace
CommentModerator with SpamModerator, as follows:

Remove the CommentModerator imports and leave only this:
from django_comments_xtd.moderation import moderator, SpamModerator

Our class Post PostCommentModerator now inherits from SpamModerator
class PostCommentModerator(SpamModerator):
 ...

moderator.register(Post, PostCommentModerator)

Now we can add a domain to the BlackListed model in the admin [http://localhost:8000/admin/] interface.
Or we could download a blacklist [http://www.joewein.net/spam/blacklist.htm] from Joe Wein’s website and load the table
with actual spamming domains.

Once we have a BlackListed domain, try to send a new comment and use an
email address with such a domain. Be sure to log out before trying, otherwise
django-comments-xtd will use the logged in user credentials and ignore the
email given in the comment form.

Sending a comment with an email address of the blacklisted domain triggers a
Comment post not allowed response, which would have been a HTTP 400 Bad
Request response with DEBUG = False in production.

Moderate on bad words

Let’s now create our own Moderator class by subclassing SpamModerator. The
goal is to provide a moderate method that looks in the content of the
comment and returns False whenever it finds a bad word in the message. The
effect of returning False is that comment’s is_public attribute will be
put to False and therefore the comment will be in moderation.

The blog application comes with a bad word list in the
file blog/badwords.py.

We assume we already have a list of BlackListed domains and we don’t need
further spam control. So we will disable comment confirmation by email. Edit
the settings.py file:

COMMENTS_XTD_CONFIRM_EMAIL = False

Now edit blog/models.py and add the code corresponding to our new
PostCommentModerator:

Below the other imports:
from django_comments_xtd.moderation import moderator, SpamModerator
from blog.badwords import badwords

...

class PostCommentModerator(SpamModerator):
 email_notification = True

 def moderate(self, comment, content_object, request):
 # Make a dictionary where the keys are the words of the message
 # and the values are their relative position in the message.
 def clean(word):
 ret = word
 if word.startswith('.') or word.startswith(','):
 ret = word[1:]
 if word.endswith('.') or word.endswith(','):
 ret = word[:-1]
 return ret

 lowcase_comment = comment.comment.lower()
 msg = dict([(clean(w), i)
 for i, w in enumerate(lowcase_comment.split())])
 for badword in badwords:
 if isinstance(badword, str):
 if lowcase_comment.find(badword) > -1:
 return True
 else:
 lastindex = -1
 for subword in badword:
 if subword in msg:
 if lastindex > -1:
 if msg[subword] == (lastindex + 1):
 lastindex = msg[subword]
 else:
 lastindex = msg[subword]
 else:
 break
 if msg.get(badword[-1]) and msg[badword[-1]] == lastindex:
 return True
 return super(PostCommentModerator, self).moderate(comment,
 content_object,
 request)

moderator.register(Post, PostCommentModerator)

Now we can try to send a comment with any of the bad words listed in badwords [https://gist.github.com/ryanlewis/a37739d710ccdb4b406d].
After sending the comment we will see the content of the
django_comments_xtd/moderated.html template and the comment will be put in
moderation.

If you enable comment confirmation by email, the comment will be put on hold
after the user clicks on the confirmation link in the email.

Threads

Up until this point in the tutorial django-comments-xtd has been configured to
disallow nested comments. Every comment is at thread level 0. It is so because
by default the setting COMMENTS_XTD_MAX_THREAD_LEVEL is set to 0.

When the COMMENTS_XTD_MAX_THREAD_LEVEL is greater than 0, comments
below the maximum thread level may receive replies that will nest inside each
other up to the maximum thread level. A comment in a the thread level below
the COMMENTS_XTD_MAX_THREAD_LEVEL can show a Reply link that
allows users to send nested comments.

In this section we will enable nested comments by modifying
COMMENTS_XTD_MAX_THREAD_LEVEL and apply some changes to
our blog_detail.html template.

We can make use of two template tags, render_xtdcomment_tree and
get_xtdcomment_tree. The former renders a template with the comments
while the latter put the comments in a nested data structure in the context of
the template.

We will also introduce the setting COMMENTS_XTD_LIST_ORDER, that
allows altering the default order in which the comments are sorted in the list.
By default comments are sorted by thread and their position inside the thread,
which turns out to be in ascending datetime of arrival. In this example we will
list newer comments first.

Let’s start by editing tutorial/settings.py to set up the maximum thread
level to 1 and a comment ordering such that newer comments are retrieve first:

COMMENTS_XTD_MAX_THREAD_LEVEL = 1 # default is 0
COMMENTS_XTD_LIST_ORDER = ('-thread_id', 'order') # default is ('thread_id', 'order')

Now we have to modify the blog post detail template to load the comments_xtd
templatetag and make use of render_xtdcomment_tree. We also want to move
the comment form from the bottom of the page to a more visible position right
below the blog post, followed by the list of comments.

Edit blog/post_detail.html to make it look like follows:

{% extends "base.html" %}
{% load comments %}
{% load comments_xtd %}

{% block title %}{{ object.title }}{% endblock %}

{% block content %}
<div class="pb-3">
 <h1 class="page-header text-center">{{ object.title }}</h1>
 <p class="small text-center">{{ object.publish|date:"l, j F Y" }}</p>
</div>
<div>
 {{ object.body|linebreaks }}
</div>

{% get_comment_count for object as comment_count %}
<div class="py-4 text-center>
 Back to the post list
 ⋅
 {{ comment_count }} comment{{ comment_count|pluralize }}
 ha{{ comment_count|pluralize:"s,ve"}} been posted.
</div>

{% if object.allow_comments %}
<div class="comment">
 <h4 class="text-center">Your comment</h4>
 <div class="well">
 {% render_comment_form for object %}
 </div>
</div>
{% endif %}

{% if comment_count %}
<ul class="media-list">
 {% render_xtdcomment_tree for object %}

{% endif %}
{% endblock %}

The tag render_xtdcomment_tree renders the template
django_comments_xtd/comment_tree.html.

Now visit any of the blog posts to which you have already sent comments and see
that a new Reply link shows up below each comment. Click on the link and post
a new comment. It will appear nested inside the parent comment. The new comment
will not show a Reply link because COMMENTS_XTD_MAX_THREAD_LEVEL
has been set to 1. Raise it to 2 and reload the page to offer the chance to
nest comments inside one level deeper.

[image: _images/reply-link.png]

Different max thread levels

There might be cases in which nested comments have a lot of sense and others
in which we would prefer a plain comment sequence. We can handle both scenarios
under the same Django project.

We just have to use both settings, COMMENTS_XTD_MAX_THREAD_LEVEL
and COMMENTS_XTD_MAX_THREAD_LEVEL_BY_APP_MODEL. The former
establishes the default maximum thread level site wide, while the latter
sets the maximum thread level on app.model basis.

If we wanted to disable nested comments site wide, and enable nested comments
up to level one for blog posts, we would set it up as follows in our
settings.py module:

COMMENTS_XTD_MAX_THREAD_LEVEL = 0 # site wide default
COMMENTS_XTD_MAX_THREAD_LEVEL_BY_APP_MODEL = {
 # Objects of the app blog, model post, can be nested
 # up to thread level 1.
 'blog.post': 1,
}

Flags

The Django Comments Framework supports comment flagging [https://django-contrib-comments.readthedocs.io/en/latest/example.html#flagging], so comments can be flagged for:

	Removal suggestion, when a registered user suggests the removal of a
comment.

	Moderator deletion, when a comment moderator marks the comment as deleted.

	Moderator approval, when a comment moderator sets the comment as approved.

django-comments-xtd expands flagging with two more flags:

	Liked it, when a registered user likes the comment.

	Disliked it, when a registered user dislikes the comment.

In this section we will see how to enable a user with the capacity to flag a
comment for removal with the Removal suggestion flag, how to express
likeability, conformity, acceptance or acknowledgement with the Liked it
flag and the opposite with the Disliked it flag.

One important requirement to mark comments is that the user flagging must be
authenticated. In other words, comments can not be flagged by anonymous users.

Commenting options

As of version 2.0 django-comments-xtd has a new setting
COMMENTS_XTD_APP_MODEL_OPTIONS that must be used to allow comment
flagging. The purpose of it is to give an additional level of control about what
action users can do on comments: flag them as inappropriate, like/dislike them,
and retrieve the list of users who liked/disliked them.

It defaults to:

COMMENTS_XTD_APP_MODEL_OPTIONS = {
 'default': {
 'allow_flagging': False,
 'allow_feedback': False,
 'show_feedback': False,
 }
}

We will enable each option in the next sections.

Removal suggestion

Enabling the comment removal flag is about including the allow_flagging
argument in the render_xtdcomment_tree template tag. Edit the
blog/post_detail.html template and append the argument:

...
<ul class="media-list">
 {% render_xtdcomment_tree for object allow_flagging %}

The allow_flagging argument makes the templatetag populate a variable
allow_flagging = True in the context in which
django_comments_xtd/comment_tree.html is rendered. Edit now the settings
module and enable the allow_flagging option for the blog.post:

COMMENTS_XTD_APP_MODEL_OPTIONS = {
 'blog.post': {
 'allow_flagging': True,
 'allow_feedback': False,
 'show_feedback': False,
 }
}

Now let’s suggest a removal. First we need to login in the admin [http://localhost:8000/admin/] interface so
that we are not an anonymous user. Then we can visit any of the blog posts we
sent comments to. There is a flag at the right side of every comment’s header.
Clicking on it takes the user to a page in which she is requested to confirm
the removal suggestion. Finally, clicking on the red Flag button confirms
the request.

Users with the django_comments.can_moderate permission will see a yellow
labelled counter near the flag button in each flagged comment, representing
how many times comments have been flagged. Also notice that when a user flags
a comment for removal the icon turns red for that user.

[image: _images/flag-counter.png]
Administrators/moderators can find flagged comment entries in the admin [http://localhost:8000/admin/]
interface, under the Comment flags model, within the Django Comments
application.

Getting notifications

A user might want to flag a comment on the basis of a violation of the site’s
terms of use, hate speech, racism or the like. To prevent a comment from staying
published long after it has been flagged we might want to receive notifications
on flagging events.

For such purpose django-comments-xtd provides the class XtdCommentModerator,
which extends django-contrib-comments’ CommentModerator.

In addition to all the options [https://django-contrib-comments.readthedocs.io/en/latest/moderation.html#moderation-options] of its parent class,
XtdCommentModerator offers the removal_suggestion_notification
attribute, that when set to True makes Django send a mail to all the
MANAGERS [http://docs.djangoproject.com/en/3.1/_objects/ref/settings/#std:setting-MANAGERS] on every Removal suggestion flag created.

To see an example let’s edit blog/models.py. If you are already using the
class SpamModerator, which inherits from XtdCommentModerator, just add
removal_suggestion_notification = True to your PostCommentModeration
class. Otherwise add the following code:

from django_comments_xtd.moderation import moderator, XtdCommentModerator

...
class PostCommentModerator(XtdCommentModerator):
 removal_suggestion_notification = True

moderator.register(Post, PostCommentModerator)

Be sure that PostCommentModerator is the only moderation class registered
for the Post model, and be sure as well that the MANAGERS [http://docs.djangoproject.com/en/3.1/_objects/ref/settings/#std:setting-MANAGERS]
setting contains a valid email address. The message sent is based on the
django_comments_xtd/removal_notification_email.txt template, already
provided within django-comments-xtd. After these changes flagging a comment
with a Removal suggestion will trigger a notification by mail.

Liked it, Disliked it

Django-comments-xtd adds two new flags: the Liked it and the Disliked it
flags.

Unlike the Removal suggestion flag, the Liked it and Disliked it
flags are mutually exclusive. A user can not like and dislike a comment at the
same time. Users can like/dislike at any time but only the last action will
prevail.

In this section we make changes to give our users the capacity to like or
dislike comments. Following the same pattern as with the removal flag, enabling
like/dislike buttons is about adding an argument to the
render_xtdcomment_tree, the argument allow_feedback.
Edit the blog/post_detail.html template and add the new argument:

<ul class="media-list">
 {% render_xtdcomment_tree for object allow_flagging allow_feedback %}

The allow_feedback argument makes the templatetag populate a variable
allow_feedback = True in the context in which
django_comments_xtd/comment_tree.html is rendered. Edit the settings
module and enable the allow_feedback option for the blog.post
app.label pair:

COMMENTS_XTD_APP_MODEL_OPTIONS = {
 'blog.post': {
 'allow_flagging': True,
 'allow_feedback': True,
 'show_feedback': False,
 }
}

The blog post detail template is ready to show the like/dislike buttons,
refresh your browser.

[image: _images/feedback-buttons.png]
Having the new like/dislike links in place, if we click on any of them we will
end up in either the django_comments_xtd/like.html or the
django_comments_xtd/dislike.html templates, which are meant to request
the user a confirmation for the operation.

Show the list of users

With the like/dislike buttons enabled we might as well consider to display the
users who actually liked/disliked comments. Again addind an argument to the
render_xtdcomment_tree will enable the feature. Change the
blog/post_detail.html and add the argument show_feedback
to the template tag:

<ul class="media-list">
 {% render_xtdcomment_tree for object allow_flagging allow_feedback show_feedback %}

{% block extra-js %}
<script
 src="https://code.jquery.com/jquery-3.3.1.min.js"
 crossorigin="anonymous"></script>
<script
 src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js"
 integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49"
 crossorigin="anonymous"></script>
<script
 src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstrap.min.js"
 integrity="sha384-ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ6OW/JmZQ5stwEULTy"
 crossorigin="anonymous"></script>
<script>
 $(function() {
 $('[data-toggle="tooltip"]').tooltip({html: true});
 });
</script>
{% endblock %}

Also change the settings and enable the show_feedback option for
blog.post:

COMMENTS_XTD_APP_MODEL_OPTIONS = {
 'blog.post': {
 'allow_flagging': True,
 'allow_feedback': True,
 'show_feedback': True,
 }
}

We loaded jQuery and twitter-bootstrap [http://getbootstrap.com] libraries from their respective default
CDNs as the code above uses bootstrap’s tooltip functionality to show the list
of users when the mouse hovers the numbers near the buttons, as the following
image shows:

[image: _images/feedback-users.png]
Put the mouse over the counters near the like/dislike buttons to display the
list of users.

Markdown

In versions prior to 2.0 django-comments-xtd required the installation of
django-markup as a dependency. There was also a specific template filter
called render_markup_comment to help rendering comment’s content in
the markup language of choice.

As of version 2.0 the backend side of the application does not require the
installation of any additional package to parser comments’ content, and
therefore does not provide the render_markup_comment filter anymore.
However, in the client side the JavaScript plugin uses Markdown by default
to render comments’ content.

As for the backend side, comment’s content is presented by default in plain
text, but it is easily customizable by overriding the template
includes/django_comments_xtd/render_comment.html.

In this section we will send a Markdown formatted comment, and once published
we will install support for Markdown, with
django-markdown2 [https://pypi.python.org/pypi/django-markdown2]. We’ll
then override the template mentioned above so that comments are interpreted
as Markdown.

Send a comment formatted in Markdown, as the one in the following image.

[image: _images/markdown-input.png]
Now we will install django-markdown2 [https://pypi.python.org/pypi/django-markdown2], and create the template
directory and the template file:

(venv)$ pip install django-markdown2
(venv)$ mkdir -p templates/includes/django_comments_xtd/
(venv)$ touch templates/includes/django_comments_xtd/comment_content.html

We have to add django_markdown2 to our INSTALLED_APPS [http://docs.djangoproject.com/en/3.1/_objects/ref/settings/#std:setting-INSTALLED_APPS], and add
the following template code to the file comment_content.html we just created:

{% load md2 %}
{{ content|markdown:"safe, code-friendly, code-color" }}

Now our project is ready to show comments posted in Markdown. After reloading,
the comment’s page will look like this:

[image: _images/markdown-comment.png]

JavaScript plugin

Up until now we have used django-comments-xtd as a backend application. As of
version 2.0 it includes a JavaScript plugin that helps moving part of the logic
to the browser improving the overall usability. By making use of the JavaScript
plugin users don’t have to leave the blog post page to preview, submit or reply
comments, or to like/dislike them. But it comes at the cost of using:

	ReactJS

	jQuery (to handle Ajax calls).

	Twitter-Bootstrap (for the UI).

	Remarkable (for Markdown support).

To know more about the client side of the application and the build process
read the specific page on the JavaScript plugin.

In this section of the tutorial we go through the steps to make use of the
JavaScript plugin.

Enable Web API

The JavaScript plugin uses the Web API provided within the app. In order to
enable it install the django-rest-framework [http://www.django-rest-framework.org/]:

(venv)$ pip install djangorestframework

Once installed, add it to our tutorial INSTALLED_APPS [http://docs.djangoproject.com/en/3.1/_objects/ref/settings/#std:setting-INSTALLED_APPS] setting:

INSTALLED_APPS = [
 ...
 'rest_framework',
 ...
]

To know more about the Web API provided by django-comments-xtd read on the
Web API page.

Enable app.model options

Be sure COMMENTS_XTD_APP_MODEL_OPTIONS includes the options we want
to enable for comments sent to Blog posts. In this case we will allow users to
flag comments for removal (allow_flagging option), to like/dislike comments
(allow_feedback), and we want users to see the list of people who
liked/disliked comments:

COMMENTS_XTD_APP_MODEL_OPTIONS = {
 'blog.post': {
 'allow_flagging': True,
 'allow_feedback': True,
 'show_feedback': True,
 }
}

The i18n JavaScript Catalog

Internationalization support (see Internationalization [https://docs.python.org/3/library/i18n.html#i18n]) has been included within the
plugin by making use of the Django’s JavaScript i18n catalog [https://docs.djangoproject.com/en/1.11/topics/i18n/translation/#using-the-javascript-translation-catalog]. If your project doesn’t need
i18n you can easily remove every mention to these functions (namespaced
under the django object) from the source and change the
webpack.config.js file to build the plugin without it.

Our tutorial doesn’t have i18n enabled (the comp example project [https://github.com/danirus/django-comments-xtd/tree/master/example/comp]
has it), but we will not remove its support from the plugin, we will simply
enable the JavaScript Catalog URL, so that the plugin can access its functions.
Edit tutorial/urls.py and add the following url:

from django.views.i18n import JavaScriptCatalog

urlpatterns = [
 ...
 path(r'jsi18n/', JavaScriptCatalog.as_view(), name='javascript-catalog'),
]

In the next section we will use the new URL to load the i18n JavaScript catalog.

Load the plugin

Now let’s edit blog/post_detail.html and make it look as follows:

{% extends "base.html" %}
{% load static %}
{% load comments %}
{% load comments_xtd %}

{% block title %}{{ object.title }}{% endblock %}

{% block content %}
<div class="pb-3">
 <h1 class="text-center">{{ object.title }}</h1>
 <p class="small text-center">{{ object.publish|date:"l, j F Y" }}</p>
</div>
<div>
 {{ object.body|linebreaks }}
</div>

<div class="py-4 text-center">
 Back to the post list
</div>

<div id="comments"></div>
{% endblock %}

{% block extra-js %}
<script crossorigin src="https://unpkg.com/react@16/umd/react.production.min.js"></script>
<script crossorigin src="https://unpkg.com/react-dom@16/umd/react-dom.production.min.js"></script>
<script>
 window.comments_props = {% get_commentbox_props for object %};
 window.comments_props_override = {
 allow_comments: {%if object.allow_comments%}true{%else%}false{%endif%},
 allow_feedback: true,
 show_feedback: true,
 allow_flagging: true,
 polling_interval: 5000 // In milliseconds.
 };
</script>
<script
 src="https://code.jquery.com/jquery-3.3.1.min.js"
 crossorigin="anonymous"></script>
<script
 src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js"
 integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49"
 crossorigin="anonymous"></script>
<script
 src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstrap.min.js"
 integrity="sha384-ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ6OW/JmZQ5stwEULTy"
 crossorigin="anonymous"></script>
<script
 type="text/javascript"
 src="{% url 'javascript-catalog' %}"></script>
<script src="{% static 'django_comments_xtd/js/vendor~plugin-2.6.2.js' %}"></script>
<script src="{% static 'django_comments_xtd/js/plugin-2.6.2.js' %}"></script>
<script>
$(function() {
 $('[data-toggle="tooltip"]').tooltip({html: true});
});
</script>
{% endblock %}

The blog post page is now ready to handle comments through the JavaScript
plugin, including the following features:

	Post comments.

	Preview comments, with instant preview update while typing.

	Reply comment in the same page, with instant preview while typing.

	Notifications of new incoming comments using active polling (override
polling_interval parameter, see the content of first <script> tag in
the code above).

	Button to reload the tree of comments, highlighting new comments (see
image below).

	Immediate like/dislike actions.

[image: _images/update-comment-tree.png]

Final notes

We have reached the end of the tutorial. I hope you got enough to start using
django-comments-xtd in your own project.

The following page introduces the Demo projects. The simple demo is a
straightforward backend handled project that uses comment confirmation by mail,
with follow-up notifications and mute links. The custom demo is an example
about how to extend django-comments-xtd Comment model with new attributes.
The comp demo shows a project using the complete set of features provided
by both django-contrib-comments and django-comments-xtd.

Checkout the Control Logic page to understand how django-comments-xtd
works along with django-contrib-comments. The Web API page details the
API provided. The JavaScript Plugin covers every aspect regarding the
frontend code. Read on Filters and Template Tags to see in detail the
list of template tags and filters offered. The page on
Customizing django-comments-xtd goes through the steps to extend the app
with a quick example and little prose. Read the Settings page and the
Templates page to get to know how you can customize the default behaviour
and default look and feel.

If you want to help, please, report any bug or enhancement directly to
the github [https://github.com/danirus/django-comments-xtd] page of the project. Your contributions are welcome.

Demo projects

There are three example projects available within django-comments-xtd’s GitHub
repository [https://github.com/danirus/django-comments-xtd/tree/master/example].

The simple project provides non-threaded comment support to articles.
It’s an only-backend project, meant as a test case of the basic features
(confirmation by mail, follow-up notifications, mute link).

The custom project provides threaded comment support to articles using a
new comment class that inherits from django-comments-xtd’s. The new comment
model adds a title field to the XtdComment class. Find more details
in Customizing django-comments-xtd.

The comp project provides comments to an Article model and a Quote model.
Comments for Quotes show how to use django-comments-xtd as a pure Django
backend application. However comments for Articles illustrate how to use the
app in combination with the provided JavaScript plugin. The project allows
nested comments and defines the maximum thread level on per app.model basis.
It uses moderation, removal suggestion flag, like/dislike flags, and list of
users who liked/disliked comments.

Visit the example directory within the repository in GitHub [http://github.com/danirus/django-comments-xtd/tree/master/example] for a
quick look.

Table of Contents

	Setup

	Simple project

	Custom project

	Comp project

Setup

The recommended way to run a demo site is within its own virtualenv [http://www.virtualenv.org/en/latest/]. Once in a new virtualenv, clone the
code and cd into any of the 3 demo sites. Then run the migrate command and
load the data in the fixtures directory:

$ virtualenv venv
$ source venv/bin/activate
(venv)$ git clone git://github.com/danirus/django-comments-xtd.git
(venv)$ cd django-comments-xtd/
(venv)$ python setup.py install
(venv)$ npm install
(venv)$ node_modules/webpack/bin/webpack.js -p
(venv)$ cd django_comments_xtd
(venv)$ django-admin compilemessages -l fi
(venv)$ django-admin compilemessages -l fr
(venv)$ django-admin compilemessages -l es
(venv)$ cd ../example/[simple|custom|comp]
(venv)$ pip install -r requirements.txt
(venv)$ python manage.py migrate
(venv)$ python manage.py loaddata ../fixtures/auth.json
(venv)$ python manage.py loaddata ../fixtures/sites.json
(venv)$ python manage.py loaddata ../fixtures/articles.json
(venv)$ # The **comp** example project needs quotes.json too:
(venv)$ python manage.py loaddata ../fixtures/json.quotes
(venv)$ python manage.py runserver

Example projects make use of the package django-markdown2 [https://github.com/svetlyak40wt/django-markdown2], which in turn depends on
Markdown2 [https://github.com/trentm/python-markdown2], to render comments
using Markdown [https://en.wikipedia.org/wiki/Markdown] syntax.

	Fixtures provide:

	
	A User admin, with password admin.

	A default Site with domain localhost:8000 so that comment confirmation
URLs are ready to hit the Django development web server.

	A couple of article objects to which the user can post comments.

By default mails are sent directly to the console using the console.
EmailBackend. Comment out EMAIL_BACKEND in the settings module to send
actual mails. You will need to provide working values for all EMAIL_*
settings.

Simple project

The simple example project features:

	An Articles App, with a model Article whose instances accept comments.

	Confirmation by mail is required before the comment hit the database,
unless COMMENTS_XTD_CONFIRM_EMAIL is set to False. Authenticated users
don’t have to confirm comments.

	Follow up notifications via mail.

	Mute links to allow cancellation of follow-up notifications.

	No nested comments.

This example project tests the initial features provided by
django-comments-xtd. Setup the project as explained above.

	Some hints:

	
	Log out from the admin site to post comments, otherwise they will be
automatically confirmed and no email will be sent.

	When adding new articles in the admin interface be sure to tick the box
allow comments, otherwise comments won’t be allowed.

	Send new comments with the Follow-up box ticked and a different email
address. You won’t receive follow-up notifications for comments posted from
the same email address the new comment is being confirmed from.

	Click on the Mute link on the Follow-up notification email and send another
comment. You will not receive further notifications.

Custom project

The custom example project extends the simple project functionality
featuring:

	Thread support up to level 2

	A new comment class that inherits from XtdComment with a new Title
field and a new form class.

[image: _images/extend-comments-app.png]

Comp project

The Comp Demo implements two apps, each of which contains a model whose
instances can received comments:

	App articles with the model Article

	App quotes with the model Quote

	Features:

	
	Comments can be nested, and the maximum thread level is established to 2.

	Comment confirmation via mail when the users are not authenticated.

	Comments hit the database only after they have been confirmed.

	Follow up notifications via mail.

	Mute links to allow cancellation of follow-up notifications.

	Registered users can like/dislike comments and can suggest comments removal.

	Registered users can see the list of users that liked/disliked comments.

	The homepage presents the last 5 comments posted either to the articles
.Article or the quotes.Quote model.

Threaded comments

The setting COMMENTS_XTD_MAX_THREAD_LEVEL is set to 2, meaning that comments
may be threaded up to 2 levels below the the first level (internally known as
level 0):

First comment (level 0)
 |-- Comment to "First comment" (level 1)
 |-- Comment to "Comment to First comment" (level 2)

render_xtdcomment_tree

By using the render_xtdcomment_tree templatetag, quote_detail.html, show
the tree of comments posted. Addind the argument allow_feedback users can
send like/dislike feedback. Adding the argument show_feedback allow visitors
see other users like/dislike feedback. And adding allow_flagging allow users
flag comments for removal.

render_last_xtdcomments

The Last 5 Comments shown in the block at the rigght uses the templatetag
render_last_xtdcomments to show the last 5 comments posted to either
articles.Article or quotes.Quote instances. The templatetag receives the
list of pairs app.model from which we want to gather comments and shows the
given N last instances posted. The templatetag renders the template
django_comments_xtd/comment.html for each comment retrieve.

JavaScript plugin

As opposed to the Quote model, the Article model receives comments via the
provided JavaScript plugin. Check the JavaScript plugin page to know more.

Control logic

Following is the application control logic described in 4 actions:

	The user visits a page that accepts comments. Your app or a 3rd. party app handles the request:

	Your template shows content that accepts comments. It loads the comments templatetag and using tags as render_comment_list and render_comment_form the template shows the current list of comments and the post your comment form.

	The user clicks on preview. Django Comments Framework post_comment view handles the request:

	Renders comments/preview.html either with the comment preview or with form errors if any.

	The user clicks on post. Django Comments Framework post_comment view handles the request:

	If there were form errors it does the same as in point 2.

	Otherwise creates an instance of TmpXtdComment model: an in-memory representation of the comment.

	Send signal comment_will_be_posted and comment_was_posted. The django-comments-xtd receiver on_comment_was_posted receives the second signal with the TmpXtdComment instance and does as follows:

	If the user is authenticated or confirmation by email is not required (see Settings):

	An instance of XtdComment hits the database.

	An email notification is sent to previous comments followers telling them about the new comment following up theirs. Comment followers are those who ticked the box Notify me about follow up comments via email.

	Otherwise a confirmation email is sent to the user with a link to confirm the comment. The link contains a secured token with the TmpXtdComment. See below Creating the secure token for the confirmation URL.

	Pass control to the next parameter handler if any, or render the comments/posted.html template:

	If the instance of XtdComment has already been created, redirect to the the comments’s absolute URL.

	Otherwise the template content should inform the user about the confirmation request sent by email.

	The user clicks on the confirmation link, in the email message. Django-comments-xtd confirm view handles the request:

	Checks the secured token in the URL. If it’s wrong returns a 404 code.

	Otherwise checks whether the comment was already confirmed, in such a case returns a 404 code.

	Otherwise sends a confirmation_received signal. You can register a receiver to this signal to do some extra process before approving the comment. See Signal and receiver. If any receiver returns False the comment will be rejected and the template django_comments_xtd/discarded.html will be rendered.

	Otherwise an instance of XtdComment finally hits the database, and

	An email notification is sent to previous comments followers telling them about the new comment following up theirs.

Creating the secure token for the confirmation URL

The Confirmation URL sent by email to the user has a secured token with the comment. To create the token Django-comments-xtd uses the module signed.py authored by Simon Willison and provided in Django-OpenID [http://github.com/simonw/django-openid].

django_openid.signed offers two high level functions:

	dumps: Returns URL-safe, sha1 signed base64 compressed pickle of a given object.

	loads: Reverse of dumps(), raises ValueError if signature fails.

A brief example:

>>> signed.dumps("hello")
'UydoZWxsbycKcDAKLg.QLtjWHYe7udYuZeQyLlafPqAx1E'

>>> signed.loads('UydoZWxsbycKcDAKLg.QLtjWHYe7udYuZeQyLlafPqAx1E')
'hello'

>>> signed.loads('UydoZWxsbycKcDAKLg.QLtjWHYe7udYuZeQyLlafPqAx1E-modified')
BadSignature: Signature failed: QLtjWHYe7udYuZeQyLlafPqAx1E-modified

There are two components in dump’s output UydoZWxsbycKcDAKLg.QLtjWHYe7udYuZeQyLlafPqAx1E, separatad by a ‘.’. The first component is a URLsafe base64 encoded pickle of the object passed to dumps(). The second component is a base64 encoded hmac/SHA1 hash of “$first_component.$secret”.

Calling signed.loads(s) checks the signature BEFORE unpickling the object -this protects against malformed pickle attacks. If the signature fails, a ValueError subclass is raised (actually a BadSignature).

Signal and receiver

In addition to the signals sent by the Django Comments Framework [https://docs.djangoproject.com/en/1.3/ref/contrib/comments/signals/], django-comments-xtd sends the following signal:

	confirmation_received: Sent when the user clicks on the confirmation link and before the XtdComment instance is created in the database.

	comment_thread_muted: Sent when the user clicks on the mute link, in a follow-up notification.

Sample use of the confirmation_received signal

You might want to register a receiver for confirmation_received. An example function receiver could check the time stamp in which a user submitted a comment and the time stamp in which the confirmation URL has been clicked. If the difference between them is over 7 days we will discard the message with a graceful “sorry, it’s a too old comment” template.

Extending the demo site with the following code will do the job:

#--
append the below code to demos/simple/views.py:

from datetime import datetime, timedelta
from django_comments_xtd import signals

def check_submit_date_is_within_last_7days(sender, data, request, **kwargs):
 plus7days = timedelta(days=7)
 if data["submit_date"] + plus7days < datetime.now():
 return False
 signals.confirmation_received.connect(check_submit_date_is_within_last_7days)

#---
change get_comment_create_data in django_comments_xtd/forms.py to cheat a
bit and make Django believe that the comment was submitted 7 days ago:

def get_comment_create_data(self):
 from datetime import timedelta # ADD THIS

 data = super(CommentForm, self).get_comment_create_data()
 data['followup'] = self.cleaned_data['followup']
 if settings.COMMENTS_XTD_CONFIRM_EMAIL:
 # comment must be verified before getting approved
 data['is_public'] = False
 data['submit_date'] = datetime.datetime.now() - timedelta(days=8) # ADD THIS
 return data

Try the simple demo site again and see that the django_comments_xtd/discarded.html template is rendered after clicking on the confirmation URL.

Maximum Thread Level

Nested comments are disabled by default, to enable them use the following settings:

	COMMENTS_XTD_MAX_THREAD_LEVEL: an integer value

	COMMENTS_XTD_MAX_THREAD_LEVEL_BY_APP_MODEL: a dictionary

Django-comments-xtd inherits the flexibility of django-contrib-comments framework [https://docs.djangoproject.com/en/1.4/ref/contrib/comments/], so that developers can plug it to support comments on as many models as they want in their projects. It is as suitable for one model based project, like comments posted to stories in a simple blog, as for a project with multiple applications and models.

The configuration of the maximum thread level on a simple project is done by declaring the COMMENTS_XTD_MAX_THREAD_LEVEL in the settings.py file:

COMMENTS_XTD_MAX_THREAD_LEVEL = 2

Comments then could be nested up to level 2:

<In an instance detail page that allows comments>

First comment (level 0)
 |-- Comment to First comment (level 1)
 |-- Comment to Comment to First comment (level 2)

Comments posted to instances of every model in the project will allow up to level 2 of threading.

On a project that allows users posting comments to instances of different models, the developer may want to declare a maximum thread level on a per app.model basis. For example, on an imaginary blog project with stories, quotes, diary entries and book/movie reviews, the developer might want to define a default, project wide, maximum thread level of 1 for any model and an specific maximum level of 5 for stories and quotes:

COMMENTS_XTD_MAX_THREAD_LEVEL = 1
COMMENTS_XTD_MAX_THREAD_LEVEL_BY_APP_MODEL = {
 'blog.story': 5,
 'blog.quote': 5,
}

So that blog.review and blog.diaryentry instances would support comments nested up to level 1, while blog.story and blog.quote instances would allow comments nested up to level 5.

Web API

django-comments-xtd uses django-rest-framework [http://www.django-rest-framework.org/] to expose a Web API that provides developers with access to the same functionalities offered through the web user interface. The Web API has been designed to cover the needs required by the JavaScript plugin, and it’s open to grow in the future to cover additional functionalities.

There are 5 methods available to perform the following actions:

	Post a new comment.

	Retrieve the list of comments posted to a given content type and object ID.

	Retrieve the number of comments posted to a given content type and object ID.

	Post user’s like/dislike feedback.

	Post user’s removal suggestions.

Finally there is the ability to generate a view action in django_comments_xtd.api.frontend to return the commentbox props as used by the JavaScript plugin plugin for use with an existing django-rest-framework [http://www.django-rest-framework.org/] project.

Table of Contents

	Post a new comment

	Retrieve comment list

	Retrieve comments count

	Post like/dislike feedback

	Post removal suggestions

Post a new comment

URL name: comments-xtd-api-create

Mount point: <comments-mount-point>/api/comment/

HTTP Methods: POST

HTTP Responses: 201, 202, 204, 403

Serializer: django_comments_xtd.api.serializers.WriteCommentSerializer

This method expects the same fields submitted in a regular django-comments-xtd form. The serializer uses the function django_comments.get_form to verify data validity.

Meaning of the HTTP Response codes:

	201: Comment created.

	202: Comment in moderation.

	204: Comment confirmation has been sent by mail.

	403: Comment rejected, as in Disallow black listed domains.

Retrieve comment list

URL name: comments-xtd-api-list

Mount point: <comments-mount-point>/api/<content-type>/<object-pk>/

<content-type> is a hyphen separated lowecase pair app_label-model

<object-pk> is an integer representing the object ID.

HTTP Methods: GET

HTTP Responses: 200

Serializer: django_comments_xtd.api.serializers.ReadCommentSerializer

This method retrieves the list of comments posted to a given content type and object ID:

$ http http://localhost:8000/comments/api/blog-post/4/

HTTP/1.0 200 OK
Allow: GET, HEAD, OPTIONS
Content-Length: 2707
Content-Type: application/json
Date: Tue, 23 May 2017 11:59:09 GMT
Server: WSGIServer/0.2 CPython/3.6.0
Vary: Accept, Cookie
X-Frame-Options: SAMEORIGIN

[
 {
 "allow_reply": true,
 "comment": "Integer erat leo, ...",
 "flags": {
 "dislike": {
 "active": false,
 "users": []
 },
 "like": {
 "active": false,
 "users": [
 "1:admin",
 "5:alice",
 "2:fulanito",
 "4:joebloggs",
 "3:menganito"
]
 },
 "removal": {
 "active": false,
 "count": null
 }
 },
 "id": 10,
 "is_removed": false,
 "level": 0,
 "parent_id": 10,
 "permalink": "/comments/cr/8/4/#c10",
 "submit_date": "May 18, 2017, 9:19 AM",
 "user_avatar": "http://www.gravatar.com/avatar/7dad9576 ...",
 "user_moderator": true,
 "user_name": "Joe Bloggs",
 "user_url": ""
 },
 {
 ...
 }
]

Retrieve comments count

URL name: comments-xtd-api-count

Mount point: <comments-mount-point>/api/<content-type>/<object-pk>/count/

<content-type> is a hyphen separated lowecase pair app_label-model

<object-pk> is an integer representing the object ID.

HTTP Methods: GET

HTTP Responses: 200

Serializer: django_comments_xtd.api.serializers.ReadCommentSerializer

This method retrieves the number of comments posted to a given content type and object ID:

$ http http://localhost:8000/comments/api/blog-post/4/count/

HTTP/1.0 200 OK
Allow: GET, HEAD, OPTIONS
Content-Length: 11
Content-Type: application/json
Date: Tue, 23 May 2017 12:06:38 GMT
Server: WSGIServer/0.2 CPython/3.6.0
Vary: Accept, Cookie
X-Frame-Options: SAMEORIGIN

{
 "count": 4
}

Post like/dislike feedback

URL name: comments-xtd-api-feedback

Mount point: <comments-mount-point>/api/feedback/

HTTP Methods: POST

HTTP Responses: 201, 204, 403

Serializer: django_comments_xtd.api.serializers.FlagSerializer

This method toggles flags like/dislike for a comment. Successive calls set/unset the like/dislike flag:

$ http -a admin:admin POST http://localhost:8000/comments/api/feedback/ comment=10 flag="like"

HTTP/1.0 201 Created
Allow: POST, OPTIONS
Content-Length: 34
Content-Type: application/json
Date: Tue, 23 May 2017 12:27:00 GMT
Server: WSGIServer/0.2 CPython/3.6.0
Vary: Accept, Cookie
X-Frame-Options: SAMEORIGIN

{
 "comment": 10,
 "flag": "I liked it"
}

Calling it again unsets the “I liked it” flag:

$ http -a admin:admin POST http://localhost:8000/comments/api/feedback/ comment=10 flag="like"

HTTP/1.0 204 No Content
Allow: POST, OPTIONS
Content-Length: 0
Date: Tue, 23 May 2017 12:26:56 GMT
Server: WSGIServer/0.2 CPython/3.6.0
Vary: Accept, Cookie
X-Frame-Options: SAMEORIGIN

It requires the user to be logged in:

$ http POST http://localhost:8000/comments/api/feedback/ comment=10 flag="like"

HTTP/1.0 403 Forbidden
Allow: POST, OPTIONS
Content-Length: 58
Content-Type: application/json
Date: Tue, 23 May 2017 12:27:31 GMT
Server: WSGIServer/0.2 CPython/3.6.0
Vary: Accept, Cookie
X-Frame-Options: SAMEORIGIN

{
 "detail": "Authentication credentials were not provided."
}

Post removal suggestions

URL name: comments-xtd-api-flag

Mount point: <comments-mount-point>/api/flag/

HTTP Methods: POST

HTTP Responses: 201, 403

Serializer: django_comments_xtd.api.serializers.FlagSerializer

This method sets the removal suggestion flag on a comment. Once created for a given user successive calls return 201 but the flag object is not created again.

$ http POST http://localhost:8000/comments/api/flag/ comment=10 flag="report"

HTTP/1.0 201 Created
Allow: POST, OPTIONS
Content-Length: 42
Content-Type: application/json
Date: Tue, 23 May 2017 12:35:02 GMT
Server: WSGIServer/0.2 CPython/3.6.0
Vary: Accept, Cookie
X-Frame-Options: SAMEORIGIN

{
 "comment": 10,
 "flag": "removal suggestion"
}

As the previous method, it requires the user to be logged in.

JavaScript plugin

As of version 2.0 django-comments-xtd comes with a JavaScript plugin that
enables comment support as in a Single Page Application fashion. Comments are
loaded and sent in the background, as long as like/dislike opinions. There is
an active verification, based on polling, that checks whether there are new
incoming comments to show to the user, and an update button that allows the
user to refresh the tree, highlighting new comments with a green label to
indicate recently received comment entries.

Note

Future v3 of django-comments-xtd will offer a vanilla JavaScript plugin
free of frontend choices, to replace the current plugin based on ReactJS,
jQuery and Twitter-bootstrap.

[image: _images/update-comment-tree.png]
This plugin is done by making choices that might not be the same you made in
your own projects.

Frontend opinions

Django is a backend framework imposing little opinions regarding the frontend.
It merely uses jQuery in the admin site. Nothing more. That leaves developers
the choice to pick anything they want for the frontend to go along with the
backend.

For backend developers the level of stability found in Python and Django
contrasts with the active diversity of JavaScript libraries available for the
frontend.

The JavaScript plugin included in the app is a mix of frontend decisions with
the goal to provide a quick and full frontend solution. Doing so the app is
ready to be plugged in a large number of backend projects, and in a reduced set
of frontend stacks.

	The JavaScript Plugin is based on:

	
	ReactJS

	jQuery (merely for Ajax)

	Remarkable (for Markdown markup support)

	Twitter-bootstrap (for the UI and the tooltip utility)

The build process is based on Webpack2 instead of any other as good a tool
available in the JavaScript building tools landscape.

The decision of building a plugin based on these choices doesn’t mean there
can’t be other ones. The project is open to improve its own range of JavaScript
plugins through contributions. If you feel like improving the current plugin or
providing additional ones, please, consider to integrate it using Webpack2 and
try to keep the source code tree as clean and structured as possible.

Build process

In order to further develop the current plugin, fix potential bugs or install
the the plugin from the sources, you have to use NodeJS [https://nodejs.org/en/] and NPM [https://www.npmjs.com/].

Set up the backend

Before installing the frontend dependencies we will prepare a Python virtualenv
in which we will have all the backend dependencies installed. Let’s start by
creating the virtualenv and fetching the sources:

$ virtualenv ~/venv/django-comments-xtd
$ source ~/venv/django-comments-xtd/bin/activate
(django-comments-xtd)$ cd ~/src/ # or cd into your sources dir of choice.
(django-comments-xtd)$ git clone https://github.com/danirus/django-comments-xtd.git
(django-comments-xtd)$ cd django-comments-xtd
(django-comments-xtd)$ python setup.py develop

Check whether the app passes the battery of tests:

(django-comments-xtd)$ python setup.py test

As the sample Django project you can use the comp example site. Install
first the django-markdown2 package (required by the comp example project) and
setup the project:

(django-comments-xtd)$ cd example/comp
(django-comments-xtd)$ pip install django-markdown2
(django-comments-xtd)$ pip install django-rosetta
(django-comments-xtd)$ python manage.py migrate
(django-comments-xtd)$ python manage.py loaddata ../fixtures/auth.json
(django-comments-xtd)$ python manage.py loaddata ../fixtures/sites.json
(django-comments-xtd)$ python manage.py loaddata ../fixtures/articles.json
(django-comments-xtd)$ python manage.py runserver

Now the project is ready and the plugin will load from the existing bundle
files. Check it out by visiting an article’s page and sending some comments. No
frontend source package has been installed so far.

Install frontend packages

At this point open another terminal and cd into django-comments-xtd source
directory again, then install all the frontend dependencies:

$ cd ~/src/django-comments-xtd
$ npm install

It will install all the dependencies listed in the package.json file in the
local node_modules directory. Once it’s finished run webpack to build the
bundles and watch for changes in the source tree:

$ webpack --watch

Webpack will put the bundles in the static directory of django-comments-xtd and
Django will fetch them from there when rendering the article’s detail page:

{% block extra-js %}
[...]
<script src="{% static 'django_comments_xtd/js/vendor~plugin-2.6.2.js' %}"></script>
<script src="{% static 'django_comments_xtd/js/plugin-2.6.2.js' %}"></script>
{% endblock extra-js %}

Code structure

Plugin sources live inside the static directory of django-comments-xtd:

$ cd ~/src/django-comments-xtd
$ tree django_comments_xtd/static/django_comments_xtd/js

django_comments_xtd/static/django_comments_xtd/js
├── src
│ ├── comment.jsx
│ ├── commentbox.jsx
│ ├── commentform.jsx
│ ├── index.js
│ └── lib.js
├── vendor~plugin-2.6.2.js
└── plugin-2.6.2.js

1 directory, 7 files

The intial development was inspired by the ReactJS Comment Box tutorial [https://github.com/facebook/react/blob/v15.3.2/docs/docs/tutorial.md].
Component names reflect those of the ReactJS tutorial.

The application entry point is located inside the index.js file. The
props passed to the CommentBox object are those declared in the
var window.comments_props defined in the django template:

<script>
 window.comments_props = {% get_commentbox_props for object %};
 window.comments_props_override = {
 allow_comments: {%if object.allow_comments%}true{%else%}false{%endif%},
 allow_feedback: true,
 show_feedback: true,
 allow_flagging: true,
 polling_interval: 2000,
 };
</script>

And are overriden by those declared in the
var window.comments_props_override.

To use without the template, you can set up an endpoint to get the props by
generating a view action within the Web API.

Improvements and contributions

The current ReactJS plugin could be ported to an Inferno [https://infernojs.org/] plugin within a reasonable timeframe. Inferno offers
a lighter footprint compared to ReactJS plus it is among the faster JavaScript
frontend frameworks.

Another improvement pending for implementation would be a websocket based
update. At the moment comment updates are received by active polling. See
commentbox.jsx, method load_count of the CommentBox component.

Contributions are welcome, write me an email at mbox@danir.us or open an issue
in the GitHub repository [https://github.com/danirus/django-comments-xtd].

Filters and template tags

Django-comments-xtd provides 5 template tags and 3 filters. Load the module to make use of them in your templates:

{% load comments_xtd %}

Table of Contents

	Tag render_xtdcomment_tree

	Tag get_xtdcomment_tree

	Tag render_last_xtdcomments

	Tag get_last_xtdcomments

	Tag get_xtdcomment_count

	Filter xtd_comment_gravatar

	Filter xtd_comment_gravatar_url

	Filter render_markup_comment

	Filter can_receive_comments_from

Tag render_xtdcomment_tree

Tag syntax:

{% render_xtdcomment_tree [for <object>] [with var_name_1=<obj_1> var_name_2=<obj_2>]
 [allow_flagging] [allow_feedback] [show_feedback]
 [using <template>] %}

Renders the threaded structure of comments posted to the given object using the first template found from the list:

	django_comments_xtd/<app>/<model>/comment_tree.html

	django_comments_xtd/<app>/comment_tree.html

	django_comments_xtd/comment_tree.html (provided with the app)

It expects either an object specified with the for <object> argument, or a variable named comments, which might be present in the context or received as comments=<comments-object>. When the for <object> argument is specified, it retrieves all the comments posted to the given object, ordered by the thread_id and order within the thread, as stated by the setting COMMENTS_XTD_LIST_ORDER.

It supports 4 optional arguments:

	allow_flagging, enables the comment removal suggestion flag. Clicking on the removal suggestion flag redirects to the login view whenever the user is not authenticated.

	allow_feedback, enables the like and dislike flags. Clicking on any of them redirects to the login view whenever the user is not authenticated.

	show_feedback, shows two list of users, of those who like the comment and of those who don’t like it. By overriding includes/django_comments_xtd/user_feedback.html you could show the lists only to authenticated users.

	using <template_path>, makes the templatetag use a different template, instead of the default one, django_comments_xtd/comment_tree.html

Example usage

In the usual scenario the tag is used in the object detail template, i.e.: blog/article_detail.html, to include all comments posted to the article, in a tree structure:

{% render_xtdcomment_tree for article allow_flagging allow_feedback show_feedback %}

Tag get_xtdcomment_tree

Tag syntax:

{% get_xtdcomment_tree for [object] as [varname] [with_feedback] %}

Returns a dictionary to the template context under the name given in [varname] with the comments posted to the given [object]. The dictionary has the form:

{
 'comment': xtdcomment_object,
 'children': [list_of_child_xtdcomment_dicts]
}

The comments will be ordered by the thread_id and order within the thread, as stated by the setting COMMENTS_XTD_LIST_ORDER.

When the optional argument with_feedback is specified the returned dictionary will contain two additional attributes with the list of users who liked the comment and the list of users who disliked it:

{
 'xtdcomment': xtdcomment_object,
 'children': [list_of_child_xtdcomment_dicts],
 'likedit': [user_a, user_b, ...],
 'dislikedit': [user_n, user_m, ...]
}

Example usage

Get an ordered dictionary with the comments posted to a given blog story and store the dictionary in a template context variabled called comment_tree:

{% get_xtdcomment_tree for story as comments_tree with_feedback %}

Tag render_last_xtdcomments

Tag syntax:

{% render_last_xtdcomments [N] for [app].[model] [[app].[model] ...] %}

Renders the list of the last N comments for the given pairs <app>.<model> using the following search list for templates:

	django_comments_xtd/<app>/<model>/comment.html

	django_comments_xtd/<app>/comment.html

	django_comments_xtd/comment.html

Example usage

Render the list of the last 5 comments posted, either to the blog.story model or to the blog.quote model. See it in action in the Multiple Demo Site, in the blog homepage, template blog/homepage.html:

{% render_last_xtdcomments 5 for blog.story blog.quote %}

Tag get_last_xtdcomments

Tag syntax:

{% get_last_xtdcomments [N] as [varname] for [app].[model] [[app].[model] ...] %}

Gets the list of the last N comments for the given pairs <app>.<model> and stores it in the template context whose name is defined by the as clause.

Example usage

Get the list of the last 10 comments two models, Story and Quote, have received and store them in the context variable last_10_comment. You can then loop over the list with a for tag:

{% get_last_xtdcomments 10 as last_10_comments for blog.story blog.quote %}
{% if last_10_comments %}
 {% for comment in last_10_comments %}
 <p>{{ comment.comment|linebreaks }}</p> ...
 {% endfor %}
{% else %}
 <p>No comments</p>
{% endif %}

Tag get_xtdcomment_count

Tag syntax:

{% get_xtdcomment_count as [varname] for [app].[model] [[app].[model] ...] %}

Gets the comment count for the given pairs <app>.<model> and populates the template context with a variable containing that value, whose name is defined by the as clause.

Example usage

Get the count of comments the model Story of the app blog have received, and store it in the context variable comment_count:

{% get_xtdcomment_count as comment_count for blog.story %}

Get the count of comments two models, Story and Quote, have received and store it in the context variable comment_count:

{% get_xtdcomment_count as comment_count for blog.story blog.quote %}

Filter xtd_comment_gravatar

Filter syntax:

{{ comment.email|xtd_comment_gravatar }}

A simple gravatar filter that inserts the gravatar [http://www.gravatar.com/] image associated to an email address.

This filter has been named xtd_comment_gravatar as oposed to simply gravatar to avoid potential name collisions with other gravatar filters the user might have opted to include in the template.

You can custom the way of generating the avatar, like this:

{{ comment.email|xtd_comment_gravatar:‘48,mm’ }}

Filter xtd_comment_gravatar_url

Filter syntax:

{{ comment.email|xtd_comment_gravatar_url }}

A simple gravatar filter that inserts the gravatar URL [http://www.gravatar.com/] associated to an email address.

This filter has been named xtd_comment_gravatar_url as oposed to simply gravatar_url to avoid potential name collisions with other gravatar filters the user might have opted to include in the template.

Filter render_markup_comment

Filter syntax:

{{ comment.comment|render_markup_comment }}

Renders a comment using a markup language specified in the first line of the comment. It uses django-markup [https://github.com/bartTC/django-markup] to parse the comments with a markup language parser and produce the corresponding output.

Example usage

A comment posted with a content like:

#!markdown
An [example](http://url.com/ "Title")

Would be rendered as a markdown text, producing the output:

<p>example</p>

Available markup languages are:

	Markdown [http://daringfireball.net/projects/markdown/syntax], when starting the comment with #!markdown.

	reStructuredText [http://docutils.sourceforge.net/docs/user/rst/quickref.html], when starting the comment with #!restructuredtext.

	Linebreaks, when starting the comment with #!linebreaks.

Filter can_receive_comments_from

Filter syntax:

{{ object|can_receive_comments_from:user }}

Returns True depending on the value of the 'who_can_post' entry in the
COMMENTS_XTD_APP_MODEL_OPTIONS.

Migrating to django-comments-xtd

If your project uses django-contrib-comments you can easily plug django-comments-xtd to add extra functionalities like comment confirmation by mail, comment threading and follow-up notifications.

This section describes how to make django-comments-xtd take over comments support in a project in which django-contrib-comments tables have received data already.

Preparation

First of all, install django-comments-xtd:

(venv)$ cd mysite
(venv)$ pip install django-comments-xtd

Then edit the settings module and change your INSTALLED_APPS [http://docs.djangoproject.com/en/3.1/_objects/ref/settings/#std:setting-INSTALLED_APPS] so that django_comments_xtd and django_comments are listed in this order. Also change the COMMENTS_APP [https://django-contrib-comments.readthedocs.io/en/latest/settings.html#std:setting-COMMENTS_APP] and add the EMAIL_* settings to be able to send mail messages:

INSTALLED_APPS = [
 ...
 'django_comments_xtd',
 'django_comments',
 ...
]
...
COMMENTS_APP = 'django_comments_xtd'

Either enable sending mail messages to the console:
EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

Or set up the EMAIL_* settings so that Django can send emails:
EMAIL_HOST = "smtp.mail.com"
EMAIL_PORT = "587"
EMAIL_HOST_USER = "alias@mail.com"
EMAIL_HOST_PASSWORD = "yourpassword"
EMAIL_USE_TLS = True
DEFAULT_FROM_EMAIL = "Helpdesk <helpdesk@yourdomain>"

Edit the urls module of the project and mount django_comments_xtd’s URLs in the path in which you had django_comments’ URLs, django_comments_xtd’s URLs includes django_comments’:

from django.conf.urls import include, url

urlpatterns = [
 ...
 url(r'^comments/', include('django_comments_xtd.urls')),
 ...
]

Now create the tables for django-comments-xtd:

(venv)$ python manage.py migrate

Populate comment data

The following step will populate XtdComment’s table with data from the Comment model. For that purpose you can use the populate_xtdcomments management command:

(venv)$ python manage.py populate_xtdcomments
Added 3468 XtdComment object(s).

You can pass as many DB connections as you have defined in DATABASES [http://docs.djangoproject.com/en/3.1/_objects/ref/settings/#std:setting-DATABASES] and the command will run in each of the databases, populating the XtdComment’s table with data from the comments table existing in each database.

Now the project is ready to handle comments with django-comments-xtd.

Customizing django-comments-xtd

django-comments-xtd can be extended in the same way as django-contrib-comments. There are three points to observe:

	The setting COMMENTS_APP must be 'django_comments_xtd'.

	The setting COMMENTS_XTD_MODEL must be your model class name, i.e.: 'mycomments.models.MyComment'.

	The setting COMMENTS_XTD_FORM_CLASS must be your form class name, i.e.: 'mycomments.forms.MyCommentForm'.

In addition to that, write an admin.py module to see the new comment class in the admin interface. Inherit from django_commensts_xtd.admin.XtdCommentsAdmin. You might want to add your new comment fields to the comment list view, by rewriting the list_display attribute of your admin class. Or change the details view customizing the fieldsets attribute.

Custom Comments Demo

The demo site custom_comments available with the source code in GitHub [https://github.com/danirus/django-comments-xtd] (directory django_comments_xtd\demos\custom_comments) implements a sample Django project with comments that extend django_comments_xtd with an additional field, a title.

settings Module

The settings.py module contains the following customizations:

INSTALLED_APPS = (
 # ...
 'django_comments_xtd',
 'django_comments',
 'articles',
 'mycomments',
 # ...
)

COMMENTS_APP = "django_comments_xtd"
COMMENTS_XTD_MODEL = 'mycomments.models.MyComment'
COMMENTS_XTD_FORM_CLASS = 'mycomments.forms.MyCommentForm'

models Module

The new class MyComment extends django_comments_xtd’s XtdComment with a title field:

from django.db import models
from django_comments_xtd.models import XtdComment

class MyComment(XtdComment):
 title = models.CharField(max_length=256)

forms Module

The forms module extends XtdCommentForm and rewrites the method get_comment_create_data:

from django import forms
from django.utils.translation import ugettext_lazy as _

from django_comments_xtd.forms import XtdCommentForm
from django_comments_xtd.models import TmpXtdComment

class MyCommentForm(XtdCommentForm):
 title = forms.CharField(
 max_length=256,
 widget=forms.TextInput(attrs={'placeholder': _('title')})
)

 def get_comment_create_data(self):
 data = super(MyCommentForm, self).get_comment_create_data()
 data.update({'title': self.cleaned_data['title']})
 return data

admin Module

The admin module provides a new class MyCommentAdmin that inherits from XtdCommentsAdmin and customize some of its attributes to include the new field title:

from django.contrib import admin
from django.utils.translation import ugettext_lazy as _

from django_comments_xtd.admin import XtdCommentsAdmin
from custom_comments.mycomments.models import MyComment

class MyCommentAdmin(XtdCommentsAdmin):
 list_display = ('thread_level', 'title', 'cid', 'name', 'content_type',
 'object_pk', 'submit_date', 'followup', 'is_public',
 'is_removed')
 list_display_links = ('cid', 'title')
 fieldsets = (
 (None, {'fields': ('content_type', 'object_pk', 'site')}),
 (_('Content'), {'fields': ('title', 'user', 'user_name', 'user_email',
 'user_url', 'comment', 'followup')}),
 (_('Metadata'), {'fields': ('submit_date', 'ip_address',
 'is_public', 'is_removed')}),
)

admin.site.register(MyComment, MyCommentAdmin)

Templates

You will need to customize the following templates:

	comments/form.html to include new fields.

	comments/preview.html to preview new fields.

	django_comments_xtd/email_confirmation_request.{txt|html} to add the new fields to the confirmation request, if it was necessary. This demo overrides them to include the title field in the mail.

	django_comments_xtd/comments_tree.html to show the new field when displaying the comments. If your project doesn’t allow nested comments you can use either this template or comments/list.html`.

	django_comments_xtd/reply.html to show the new field when displaying the comment the user is replying to.

Modifying comments with code

Here’s an example of how to access the underlying model storing your comments:

from django_comments_xtd.models import XtdComment
from django.contrib.contenttypes.models import ContentType

def unbsubscribe_everyone(model_instance):
 content_type = ContentType.objects.get_for_model(model_instance)

 XtdComment.objects\
 .filter(content_type=content_type, object_pk=model_instance.pk)\
 .update(followup=False)

Internationalization

django-comments-xtd is i18n ready. Please, consider extending support for your language if it’s not listed below. At the moment it’s available only in:

	English, en (default language)

	Finnish, fi

	French, fr

	Norwegian, no

	Spanish, es

Contributions

This is a step by step guide to help extending the internationalization of django-comments-xtd. Install the comp example site. It will be used along with django-rosetta [https://github.com/mbi/django-rosetta] to help with translations.

$ virtualenv venv
$ source venv/bin/activate
(venv)$ git clone git://github.com/danirus/django-comments-xtd.git
(venv)$ cd django-comments-xtd/example/comp
(venv)$ pip install django-rosetta django-markdown2
(venv)$ python manage.py migrate
(venv)$ python manage.py loaddata ../fixtures/auth.json
(venv)$ python manage.py loaddata ../fixtures/sites.json
(venv)$ python manage.py loaddata ../fixtures/articles.json
(venv)$ python manage.py loaddata ../fixtures/quotes.json
(venv)$ python manage.py runserver

Edit the comp/settings.py module. Add the ISO-639-1 [https://en.wikipedia.org/wiki/ISO_639-1] code of the language you want to support to LANGUAGES [http://docs.djangoproject.com/en/3.1/_objects/ref/settings/#std:setting-LANGUAGES] and add 'rosetta' to your INSTALLED_APPS [http://docs.djangoproject.com/en/3.1/_objects/ref/settings/#std:setting-INSTALLED_APPS].

LANGUAGES = (
 ('nl', 'Dutch'),
 ('en', 'English'),
 ('fi', 'Finnish'),
 ('fr', 'French'),
 ('de', 'German'),
 ('no', 'Norwegian'),
 ('ru', 'Russian'),
 ('es', 'Spanish'),
 ...
)

INSTALLED_APPS = [
 ...
 'rosetta',
 ...
]

Note

When django-rosetta is enabled in the comp project, the homepage shows a selector to help switch languages. It uses the language_tuple filter, located in the comp_filters.py module, to show the language name in both, the translated form and the original language.

We have to create the translation catalog for the new language. Use the ISO-639-1 [https://en.wikipedia.org/wiki/ISO_639-1] code to indicate the language. There are two catalogs to translate, one for the backend and one for the frontend.

The frontend catalog is produced out of the plugin-X.Y.Z.js file. It’s a good idea to run the webpack --watch command if you change the messages in the sources of the plugin (placed in the js/src/ directory). This way the plugin is built automatically and the Django makemessages command will fetch the new messages accordingly.

Keep the runserver command launched above running in one terminal and open another terminal to run the makemessages and compilemessages commands:

$ source venv/bin/activate
(venv)$ cd django-comments-xtd/django_comments_xtd
(venv)$ django-admin makemessages -l de
(venv)$ django-admin makemessages -d djangojs -l de

Now head to the rosetta page, under http://localhost:8000/rosetta/, do login with user admin and password admin, and proceed to translate the messages. Find the two catalogs for django-comments-xtd under the Third Party filter, at the top-right side of the page.

Django must have the catalogs compiled before the messages show up in the comp site. Run the compile message for that purpose:

(venv)$ django-admin compilemessages

The comp example site is now ready to show the messages in the new language. It’s time to verify that the translation fits the UI. If everything looks good, please, make a Pull Request to add the new .po files to the upstream repository.

Settings

To use django-comments-xtd it is necessary to declare the
COMMENTS_APP [https://django-contrib-comments.readthedocs.io/en/latest/settings.html#std:setting-COMMENTS_APP] setting in your project’s settings module
as:

COMMENTS_APP = "django_comments_xtd"

A number of additional settings are available to customize django-comments-xtd
behaviour.

Table of Contents

	COMMENTS_XTD_MAX_THREAD_LEVEL

	COMMENTS_XTD_MAX_THREAD_LEVEL_BY_APP_MODEL

	COMMENTS_XTD_CONFIRM_EMAIL

	COMMENTS_XTD_FROM_EMAIL

	COMMENTS_XTD_CONTACT_EMAIL

	COMMENTS_XTD_FORM_CLASS

	COMMENTS_XTD_MODEL

	COMMENTS_XTD_LIST_ORDER

	COMMENTS_XTD_MARKUP_FALLBACK_FILTER

	COMMENTS_XTD_SALT

	COMMENTS_XTD_SEND_HTML_EMAIL

	COMMENTS_XTD_THREADED_EMAILS

	COMMENTS_XTD_APP_MODEL_OPTIONS

	COMMENTS_XTD_API_USER_REPR

COMMENTS_XTD_MAX_THREAD_LEVEL

Optional. Indicates the Maximum thread level for comments. In other
words, whether comments can be nested. This setting established the default
value for comments posted to instances of every model instance in Django. It
can be overriden on per app.model basis using the
COMMENTS_XTD_MAX_THREAD_LEVEL_BY_APP_MODEL, introduced right after
this section.

An example:

COMMENTS_XTD_MAX_THREAD_LEVEL = 8

It defaults to 0. What means nested comments are not permitted.

COMMENTS_XTD_MAX_THREAD_LEVEL_BY_APP_MODEL

Optional. The Maximum thread level on per app.model basis is a
dictionary with pairs app_label.model as keys and the maximum thread level
for comments posted to instances of those models as values. It allows
definition of max comment thread level on a per app_label.model basis.

An example:

COMMENTS_XTD_MAX_THREAD_LEVEL = 0
COMMENTS_XTD_MAX_THREAD_LEVEL_BY_APP_MODEL = {
 'projects.release': 2,
 'blog.stories': 8,
 'blog.quotes': 8,
 'blog.diarydetail': 0 # Omit, defaults to COMMENTS_XTD_MAX_THREAD_LEVEL
}

In the example, comments posted to projects.release instances can go up to
level 2:

First comment (level 0)
 |-- Comment to "First comment" (level 1)
 |-- Comment to "Comment to First comment" (level 2)

It defaults to {}. What means the maximum thread level is setup
with COMMENTS_XTD_MAX_THREAD_LEVEL.

COMMENTS_XTD_CONFIRM_EMAIL

Optional. It specifies the confirm comment post by mail setting,
establishing whether a comment confirmation should be sent by mail. If set
to True a confirmation message is sent to the user with a link on which
she has to click to confirm the comment. If the user is already authenticated
the confirmation is not sent and the comment is accepted, if no moderation has
been setup up, with no further confirmation needed.

If is set to False, and no moderation has been set up to potentially discard
it, the comment will be accepted.

Read about the Moderation topic in the tutorial.

An example:

COMMENTS_XTD_CONFIRM_EMAIL = True

It defaults to True.

COMMENTS_XTD_FROM_EMAIL

Optional. It specifies the from mail address setting used in the
from field when sending emails.

An example:

COMMENTS_XTD_FROM_EMAIL = "noreply@yoursite.com"

It defaults to settings.DEFAULT_FROM_EMAIL.

COMMENTS_XTD_CONTACT_EMAIL

Optional. It specifies a **contact mail address the user could use to get
in touch with a helpdesk or support personnel. It’s used in both templates,
email_confirmation_request.txt and email_confirmation_request.html,
from the templates/django_comments_xtd directory.

An example:

COMMENTS_XTD_FROM_EMAIL = "helpdesk@yoursite.com"

It defaults to settings.DEFAULT_FROM_EMAIL.

COMMENTS_XTD_FORM_CLASS

Optional, form class to use when rendering comment forms. It’s a string
with the class path to the form class that will be used for comments.

An example:

COMMENTS_XTD_FORM_CLASS = "mycomments.forms.MyCommentForm"

It defaults to “django_comments_xtd.forms.XtdCommentForm”.

COMMENTS_XTD_MODEL

Optional, represents the model class to use for comments. It’s a string
with the class path to the model that will be used for comments.

An example:

COMMENTS_XTD_MODEL = "mycomments.models.MyCommentModel"

Defaults to “django_comments_xtd.models.XtdComment”.

COMMENTS_XTD_LIST_ORDER

Optional, represents the field ordering in which comments are retrieve, a
tuple with field names, used by the get_queryset method of XtdComment
model’s manager.

It defaults to ('thread_id', 'order')

COMMENTS_XTD_MARKUP_FALLBACK_FILTER

Optional, default filter to use when rendering comments. Indicates the
default markup filter for comments. This value must be a key in the
MARKUP_FILTER setting. If not specified or None, comments that do
not indicate an intended markup filter are simply returned as plain text.

An example:

COMMENTS_XTD_MARKUP_FALLBACK_FILTER = 'markdown'

It defaults to None.

COMMENTS_XTD_SALT

Optional, it is the extra key to salt the comment form. It establishes
the bytes string extra_key used by signed.dumps to salt the comment form
hash, so that there an additional secret is in use to encode the comment before
sending it for confirmation within a URL.

An example:

COMMENTS_XTD_SALT = 'G0h5gt073h6gH4p25GS2g5AQ2Tm256yGt134tMP5TgCX$&HKOYRV'

It defaults to an empty string.

COMMENTS_XTD_SEND_HTML_EMAIL

Optional, enable/disable HTML mail messages. This boolean setting
establishes whether email messages have to be sent in HTML format. By the
default messages are sent in both Text and HTML format. By disabling the
setting, mail messages will be sent only in text format.

An example:

COMMENTS_XTD_SEND_HTML_EMAIL = False

It defaults to True.

COMMENTS_XTD_THREADED_EMAILS

Optional, enable/disable sending mails in separated threads. For low
traffic websites sending mails in separate threads is a fine solution.
However, for medium to high traffic websites such overhead could be reduced
by using other solutions, like a Celery application or any other detached
from the request-response HTTP loop.

An example:

COMMENTS_XTD_THREADED_EMAILS = False

Defaults to True.

COMMENTS_XTD_APP_MODEL_OPTIONS

Optional. Allow enabling/disabling commenting options on per
app_label.model basis. The options available are the following:

	allow_flagging: Allow registered users to flag comments as inappropriate.

	allow_feedback: Allow registered users to like/dislike comments.

	show_feedback: Allow django-comments-xtd to report the list of users who
liked/disliked the comment. The representation of each user in the list
depends on the next setting :setting::COMMENTS_XTD_API_USER_REPR.

	who_can_post: Can be either ‘all’ or ‘users’. When it is ‘all’, all
users can post, whether registered users or mere visitors. When it is
‘users’, only registered users can post. Read the use case
Only signed in users can comment, for details on how to set it
up.

An example use:

COMMENTS_XTD_APP_MODEL_OPTIONS = {
 'blog.post': {
 'allow_flagging': True,
 'allow_feedback': True,
 'show_feedback': True,
 'who_can_post': 'users'
 }
}

Defaults to:

COMMENTS_XTD_APP_MODEL_OPTIONS = {
 'default': {
 'allow_flagging': False,
 'allow_feedback': False,
 'show_feedback': False,
 'who_can_post': 'all'
 }
}

COMMENTS_XTD_API_USER_REPR

Optional. Function that receives a user object and returns its string
representation. It’s used to produced the list of users who liked/disliked
comments. By default it outputs the username, but it could perfectly return the
full name:

COMMENTS_XTD_API_USER_REPR = lambda u: u.get_full_name()

Defaults to:

COMMENTS_XTD_API_USER_REPR = lambda u: u.username

Templates

This page details the list of templates provided by django-comments-xtd. They are located under the django_comments_xtd/ templates directory.

Table of Contents

	email_confirmation_request

	comment_tree.html

	user_feedback.html

	like.html

	liked.html

	dislike.html

	disliked.html

	discarded.html

	email_followup_comment

	comment.html

	posted.html

	reply.html

	muted.html

	only_users_can_post.html

email_confirmation_request

As .html and .txt, this template represents the confirmation message sent to the user when the Send button is clicked to post a comment. Both templates are sent in a multipart message, or only in text format if the COMMENTS_XTD_SEND_HTML_EMAIL setting is set to False.

In the context of the template the following objects are expected:

	The site object (django-contrib-comments, and in turn django-comments-xtd, use the Django Sites Framework [https://docs.djangoproject.com/en/1.11/ref/contrib/sites/]).

	The comment object.

	The confirmation_url the user has to click on to confirm the comment.

comment_tree.html

This template is rendered by the Tag render_xtdcomment_tree to represent the comments posted to an object.

In the context of the template the following objects are expected:

	A list of dictionaries called comments in which each element is a dictionary like:

{
 'comment': xtdcomment_object,
 'children': [list_of_child_xtdcomment_dicts]
}

Optionally the following objects can be present in the template:

	A boolean allow_flagging to indicate whether the user will have the capacity to suggest comment removal.

	A boolean allow_feedback to indicate whether the user will have the capacity to like/dislike comments. When True the special template user_feedback.html will be rendered.

user_feedback.html

This template is expected to be in the directory includes/django_comments_xtd/, and it provides a way to customized the look of the like and dislike buttons as long as the list of users who clicked on them. It is included from comment_tree.html. The template is rendered only when the Tag render_xtdcomment_tree is used with the argument allow_feedback.

In the context of the template is expected:

	The boolean variable show_feedback, which will be set to True when passing the argument show_feedback to the Tag render_xtdcomment_tree. If True the template will show the list of users who liked the comment and the list of those who disliked it.

	A comment item.

Look at the section Show the list of users to read on this particular topic.

like.html

This template is rendered when the user clicks on the like button of a comment.

The context of the template expects:

	A boolean already_liked_it that indicates whether the user already clicked on the like button of this comment. In such a case, if the user submits the form a second time the liked-it flag is withdrawn.

	The comment subject to be liked.

liked.html

This template is rendered when the user click on the submit button of the form presented in the like.html template. The template is meant to thank the user for the feedback. The context for the template doesn’t expect any specific object.

dislike.html

This template is rendered when the user clicks on the dislike button of a comment.

The context of the template expects:

	A boolean already_disliked_it that indicates whether the user already clicked on the dislike button for this comment. In such a case, if the user submits the form a second time the disliked-it flag is withdrawn.

	The comment subject to be liked.

disliked.html

This template is rendered when the user click on the submit button of the form presented in the dislike.html template. The template is meant to thank the user for the feedback. The context for the template doesn’t expect any specific object.

discarded.html

This template gets rendered if any receiver of the signal confirmation_received returns False. Informs the user that the comment has been discarded. Read the subsection Signal and receiver in the Control Logic to know about the confirmation_received signal.

email_followup_comment

As .html and .txt, this template represents the mail message sent when there is a new comment following up the user’s. It’s sent to the user who posted the comment that is being commented in a thread, or that arrived before the one being sent. To receive this email the user must tick the box Notify me of follow up comments via email.

The template expects the following objects in the context:

	The site object.

	The comment object about which users are being informed.

	The mute_url to offer the notified user the chance to stop receiving notifications on new comments.

comment.html

This template is rendered under any of the following circumstances:

	When using the Tag render_last_xtdcomments.

	When a logged in user sends a comment via Ajax. The comment gets rendered immediately. JavaScript client side code still has toe handle the response.

posted.html

Rendered when a not authenticated user sends a comment. It informs the user that a confirmation message has been sent and that the link contained in the mail must be clicked to confirm the publication of the comment.

reply.html

Rendered when a user clicks on the reply link of a comment. Reply links are created with XtdComment.get_reply_url method. They show up below the text of each comment when they allow nested comments.

muted.html

Rendered when a user clicks on the mute link received in a follow-up notification message. It informs the user that the site will not send more notifications on new comments sent to the object.

only_users_can_post.html

django-comments-xtd can be customize so that only registered users can post comments. Read the use case Only registered users can post, for details. The purpose of this template is to allow customizing the HTML message displayed when a non-registered visitor gets to the comments page. The message is displayed instead of the comment form.

This template expects a context variable html_id_suffix.

Use cases

In addition to the standard usage introduced over the previous chapters, this
page will list more specific use examples.

	Only signed in users can comment

Only signed in users can comment

This page describes how to setup django-comments-xtd so that only registered
users can write comments or flag them. That means mere visitors will be
able to see the comments but won’t be able to send them. In order to do so a
visitor must login first. The following instructions use the Django
admin interface to login and logout users.

Table of Contents

	Simple example using only the backend

	Full featured example using backend and frontend code

Simple example using only the backend

A simple site using django-comments-xtd can be represented by the
Simple project.

Customize the simple project

The Simple project is a basic example site that allows both, visitors and
registered users, post comments to articles. It has been introduced in the Demo
projects page: Simple project. The example loads a couple of articles to
illustrate the functionality.

If you have already setup the Simple project, and have sent a few
testing comments to see that visitors and registered users can comment, add the
COMMENTS_XTD_APP_MODEL_OPTIONS entry at the bottom of the
settings.py module to allow only registered users to post comments:

COMMENTS_XTD_APP_MODEL_OPTIONS = {
 'default': {
 'allow_flagging': False,
 'allow_feedback': False,
 'show_feedback': False,
 'who_can_post': 'users'
 }
}

Once the change is saved and Django has reloaded check that, as before,
registered users can comment without issues, however visitors get the HTTP-400
page (Bad Request).

As a final step to customize the simple example site either edit
templates/comments/form.html or templates/articles/article_detail.html
to display a message inviting visitors to login or register instead of showing
the post comment form.

As an example, here is a modified version of the article_detail.html
template of the Simple project that displays a message with a link to the login
page when the user is not authenticated:

[...]

 {% if object.allow_comments %}
 {% if user.is_authenticated %}
 <div class="comment">
 <h5 class="text-center">Post your comment</h5>
 <div class="well my-4">
 {% render_comment_form for object %}
 </div>
 </div>
 {% else %}
 <p class="text-center">
 Only registered users can post comments. Please,
 login.
 </p>
 {% endif %}
 {% else %}
 <h5 class="text-center">comments are disabled for this article</h5>
 {% endif %}

[...]

Full featured example using backend and frontend code

This section goes through the steps to customize a project that uses both,
the backend and the frontend side of django-comments-xtd, to prevent that
unregistered users can post comments.

We will use the Comp project.

The Comp project contains two very similar apps: articles and quotes.
Both apps allow visitors and registered users to post nested comments. The main
difference between articles and quotes in the Comp project is that the articles
app uses the JavaScript plugin, while the quotes app uses merely the backend.

Customize the quotes app

If you have already setup the Comp project, and have sent a few
testing comments to see that visitors and registered users can comment, edit
the COMMENTS_XTD_APP_MODEL_OPTIONS at the bottom of the
settings.py and append the pair 'who_can_post': 'users' to the
quotes app dictionary:

COMMENTS_XTD_APP_MODEL_OPTIONS = {
 'quotes.quote': {
 'allow_flagging': True,
 'allow_feedback': True,
 'show_feedback': True,
 'who_can_post': 'users'
 }
}

Once changes are saved and Django has restarted see that registered users can
comment without issues. However visitors get the HTTP-400 page (Bad Request).

One last customization is required to prevent the HTTP-400 Bad Request. We
have to edit the templates/quotes/quote_detail.html file and be sure
that the block that renders the comment form is not displayed when the user
browsing the site is a mere visitor. The following changes will make it:

[...] around line 41...

 {% if object.allow_comments %}
 {% if object|can_receive_comments_from:user %}
 <div class="card card-block mt-4 mb-5">
 <div class="card-body">
 <h4 class="card-title text-center pb-3">Post your comment</h4>
 {% render_comment_form for object %}
 </div>
 </div>
 {% else %}
 <p class="mt-4 mb-5 text-center">
 Only registered users can post comments. Please,
 login.
 </p>
 {% endif %}
 {% else %}
 <h4 class="mt-4 mb-5 text-center text-secondary">
 Comments are disabled for this quote.
 </h4>
 {% endif %}

[...]

Note

See that in the previous snippet we use the template filter
can_receive_comments_from. Using this filter you could change the
setting 'who_can_post' to 'all' in your
COMMENTS_XTD_APP_MODEL_OPTIONS to allow mere visitors to post
comments, and your template would do as expected without further changes.

If we rather had used {% if user.is_authenticated %} the template would
have still to be changed to display the comment form to all, visitors and
registered users.

After the template changes are saved, mere users will see a message
inviting them to login. Also, the Reply link to send nested comments is
already aware of the value of the 'who_can_post' setting and will redirect
you to login if you have not done so yet.

Customize the articles app of the comp project

The articles app uses the JavaScript plugin. The only change required consist of
adding the pair 'who_can_post': 'users' to the 'articles.article'
dictionary entry of the COMMENTS_XTD_APP_MODEL_OPTIONS, as we did
with the quotes app. That will make it work.

Run the site and check that as a mere visitor (logout [http://localhost:8000/admin/logout] first) you can not send comments to
articles. Instead of the comment form there must be a message in blue saying
that Only registered users can post comments. If you login [http://localhost:8000/admin/login/] and visit an article’s page the comment
form will be visible again.

The message in blue is the default response hardcoded in the commentbox.jsx
module of the JavaScript plugin. The commentbox module controls whether the user
in the session can post comments or not. If the user can not post comments it
defaults to display that message in blue.

Most of the times we will want to customize that message. We will achieve it by
modifying both, the base.html and the articles/article_detail.html, and
by creating a new template in the comp/templates/django_comments_xtd
directory called only_users_can_post.html.

The changes in templates/base.html consist of adding a hidden block. We will
put content in this hidden block in the articles_detail.html. Add the
following HTML code before the script tags in the base.html in the
example/comp/templates directory:

[...] around line 67, right before the first <script> tag...

 <div style="display:none">
 {% block hidden %}
 {% endblock %}
 </div>

[...]

Add the following code to templates/articles/article_detail.html:

[...] around line 46, right before the {% block extra_js %}...

{% block hidden %}
 {% render_only_users_can_post_template object %}
{% endblock %}

And finally create the file only_users_can_post.html within the
comp/templates/django_comments_xtd directory, with the following content
in it:

<div id="only-users-can-post-{{ html_id_suffix }}">
 <p class="text-center">Only registered users can post comments. Please,
 login.
 </p>
</div>

With all the changes already done,
logout [http://localhost:8000/admin/logout/] of the comp site and reload
the article’s page. You should see the message with the login link.

[image: ../_images/only-users-can-post.png]

 Python Module Index

 d

 		 	

 		
 d	

 	
 	
 django_comments_xtd	
 django-comments-extended.

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | X

A

 	
 	ajax

 	template

C

 	
 	can_receive_comments_from

 	filter

 	template tag

 	comment_tree, [1]

 	template, [1]

 	
 COMMENTS_XTD_API_USER_REPR

 	setting

 	
 COMMENTS_XTD_APP_MODEL_OPTIONS

 	setting

 	
 COMMENTS_XTD_CONFIRM_EMAIL

 	setting

 	
 COMMENTS_XTD_CONTACT_EMAIL

 	setting

 	
 COMMENTS_XTD_FORM_CLASS

 	setting

 	
 COMMENTS_XTD_FROM_EMAIL

 	setting

 	
 	
 COMMENTS_XTD_LIST_ORDER

 	setting

 	
 COMMENTS_XTD_MARKUP_FALLBACK_FILTER

 	setting

 	
 COMMENTS_XTD_MAX_THREAD_LEVEL

 	setting

 	
 COMMENTS_XTD_MAX_THREAD_LEVEL_BY_APP_MODEL

 	setting

 	
 COMMENTS_XTD_MODEL

 	setting

 	
 COMMENTS_XTD_SALT

 	setting

 	
 COMMENTS_XTD_SEND_HTML_EMAIL

 	setting

 	
 COMMENTS_XTD_THREADED_EMAILS

 	setting

 	custom

 	demo

D

 	
 	
 Demo

 	Multiple

 	Setup

 	Simple

 	
 	
 demo

 	custom

 	discarded

 	template

 	django_comments_xtd (module)

E

 	
 	email_confirmation_request

 	template

 	
 	email_followup_comment

 	template

F

 	
 	Features

 	
 filter

 	can_receive_comments_from

 	render_markup_comment

 	
 	
 Filters

 	Templatetags

G

 	
 	get_last_xtdcomments

 	tag

 	get_xtdcomment_count

 	tag

 	template tag

 	
 	get_xtdcomment_tree

 	tag

 	template tag

 	Guide

I

 	
 	Introduction

L

 	
 	Level

 	Maximum Thread, [1]

 	Thread

 	
 	liked, [1], [2], [3]

 	template, [1], [2], [3]

M

 	
 	
 Maximum

 	Thread

 	Thread Level, [1]

 	Moderation

 	
 	Multiple

 	Demo

 	muted

 	template

N

 	
 	
 Nesting

 	Threading

P

 	
 	posted

 	template

 	
 	preparation

 	tutorial

Q

 	
 	
 Quick

 	Start

R

 	
 	render_last_xtdcomments

 	tag

 	
 render_markup_comment

 	filter

 	template tag

 	
 render_markup_comment, Markdown

 	reStructuredText

 	
 	render_xtdcomment_tree

 	tag

 	template tag

 	reply

 	template

S

 	
 	
 setting

 	COMMENTS_XTD_API_USER_REPR

 	COMMENTS_XTD_APP_MODEL_OPTIONS

 	COMMENTS_XTD_CONFIRM_EMAIL

 	COMMENTS_XTD_CONTACT_EMAIL

 	COMMENTS_XTD_FORM_CLASS

 	COMMENTS_XTD_FROM_EMAIL

 	COMMENTS_XTD_LIST_ORDER

 	COMMENTS_XTD_MARKUP_FALLBACK_FILTER

 	COMMENTS_XTD_MAX_THREAD_LEVEL

 	COMMENTS_XTD_MAX_THREAD_LEVEL_BY_APP_MODEL

 	COMMENTS_XTD_MODEL

 	COMMENTS_XTD_SALT

 	COMMENTS_XTD_SEND_HTML_EMAIL

 	COMMENTS_XTD_THREADED_EMAILS

 	
 	
 Setup

 	Demo

 	
 Signal

 	Receiver

 	Simple

 	Demo

 	
 Start

 	Quick

T

 	
 	
 tag

 	get_last_xtdcomments

 	get_xtdcomment_count

 	get_xtdcomment_tree

 	render_last_xtdcomments

 	render_xtdcomment_tree

 	
 template

 	ajax

 	comment_tree, [1]

 	discarded

 	email_confirmation_request

 	email_followup_comment

 	liked, [1], [2], [3]

 	muted

 	posted

 	reply

 	
 template tag

 	can_receive_comments_from

 	get_xtdcomment_count

 	get_xtdcomment_tree

 	render_markup_comment

 	render_xtdcomment_tree

 	xtd_comment_gravatar

 	xtd_comment_gravatar_url

 	
 	
 Templatetags

 	Filters

 	
 Thread

 	Level

 	Level, Maximum, [1]

 	Maximum

 	
 Threading

 	Nesting

 	
 tutorial

 	preparation

X

 	
 	xtd_comment_gravatar

 	template tag

 	
 	xtd_comment_gravatar_url

 	template tag

 _static/comment-close.png

_static/comment.png

_static/file.png

_static/down-pressed.png

_static/down.png

_images/comments-enabled.png
Maecenas vitae metus non ante bibendum tincidunt. Nam vulputate arcu nec varius elementum.
Aliquam pellentesque tortor dolor, non varius quam blandit quis. Aenean id pellentesque dui.
Donec a fringilla odio, quis sollicitudin enim. Maecenas mollis viverra omare. Proin dictum purus
nunc, a elementum nunc ultrices et. Fusce feugiat, velit mollis finibus laoreet, libero leo tempus
quam, in faucibus magna augue eu erat. Donec tristique sodales sagittis. Aenean rutrum in odio at
eleifend. Nullam a ullamcorper ante. Nunc suscipit sagittis ex, et pretium erat porta sit amet.
Integer sollicitudin quis nisi id dictum.

Back to the post list - 3 comments have been posted.

Post your comment

Your comment

Name name

Mail mail address

Required for comment verification

Link | urlyour name links to (optional)

Notify me about follow-up comments

PREVIEW

_images/cover.png
finibus aoreet, libero Leo tempus quam, in faucibus magna augue eu erat. Donec tristique
sodales sagittis. Aenean rutrum in odio at eleifend. Nullam a ullamcorper ante. Nunc
it ex, et pretium erat porta sit amet. Integer sollicitudin quis nisi id dictum.

Back to the post list

There are 4 comments below.

Post your comment

~ Notify me about follow-up comments

(o [

admin

Sl 2017, 919 AM - Joe Bloggs 1]
WA erat Leo, molestie vel ligula vel, interdum convallis est. Vivamus ultricies mi
nec venenatis nunc faucibus sit amet. Aliquam suscipit interdum nunc, at aliquet
itur vel Nam vel suscipit nibh. Quisque id cursus velit.
515 [* Reply

[

joebloggs
menganito

May 18, 2017, 9:27 AM - Fulano de Tal
Vestibulum non nibh vel est maximus dignissim. Vestibulum ante ipsum
primis in faucibus orci luctus et ultrices posuere cubilia Curae; Suspendisse
lobortis ipsum sed mauris placerat, vitae hendrerit dui luctus.

106|410

May 18, 2017, 7:10 AM - Alice
Sed id pharetra lorem. Pellentesque ornare tincidunt dapibus. Aenean ac odio libero.

(=3 - May 23, 2017, 9:22 AM - Fulano De Tal

Curabitur interdum tellus vel enim consequat, sit amet rutrum risus egestas.
Nulla et magna et enim feugiat consectetur vitae a magna. Proin consectetur at
velit suscipit tincidunt. Suspendisse sed convallis erat. Vestibulum elementum
libero arcy, vitae tincidunt risus luctus id.

_static/up-pressed.png

_static/minus.png

_static/plus.png

_images/extend-comments-app.png
Title

Name

Mail

Link

back to the articles list

There are 2 comments below.

Post your comment

Required for comment verification

) Notify me about follow-up comments

(=

_images/feedback-buttons.png
Nov. 6, 2018, 8:20 pam. - Flanito de Tal et]
In quis ante at nisL sollicitudin varius. Fusce aliquet auctor sapien, eu venenatis tellus
consectetur quis. Nam rhoncus lobortis risus, eget dictum magna maximus vel.
Suspendisse rhoncus, massa vitae cursus finibus, mauris ex malesuada nisL, sit amet
dictum magna Leo egestas tellus.

"l o Repl

_images/feedback-users.png
May 18, 2017, 919 a.m. - Henry Gondorff
Integer erat leo, molestie vel ligula vel, interdum convallis est. Vivamus ultricies
mi neque, nec venenatis nunc faucibus sit amet. Aliquam suscipit interdum nunc,
at aliquet dui efficitur vel. Nam vel suscipit nibh. Quisque id cursus velit.

51

May 18, 2017, 9:27 a.m. - Fulano de Tal 1 I~
PSS non nibh vel est maximus dignissim. Vestibulum ante ipsum
ETZ ucibus orci Luctus et ultrices posuere cubilia Curae;

LEulise obortis ipsum sed mauris placerat, vitae hendrerit dui
menganito

1 |G Reply

nav.xhtml

 Table of Contents

 		
 Welcome to django-comments-xtd

 		
 Quick start guide

 		
 Tutorial

 		
 Introduction

 		
 Preparation

 		
 Configuration

 		
 Comment confirmation

 		
 Comments tags

 		
 Moderation

 		
 Disallow black listed domains

 		
 Moderate on bad words

 		
 Threads

 		
 Different max thread levels

 		
 Flags

 		
 Commenting options

 		
 Removal suggestion

 		
 Liked it, Disliked it

 		
 Markdown

 		
 JavaScript plugin

 		
 Enable Web API

 		
 Enable app.model options

 		
 The i18n JavaScript Catalog

 		
 Load the plugin

 		
 Final notes

 		
 Demo projects

 		
 Setup

 		
 Simple project

 		
 Custom project

 		
 Comp project

 		
 Threaded comments

 		
 render_xtdcomment_tree

 		
 render_last_xtdcomments

 		
 JavaScript plugin

 		
 Control logic

 		
 Creating the secure token for the confirmation URL

 		
 Signal and receiver

 		
 Sample use of the confirmation_received signal

 		
 Maximum Thread Level

 		
 Web API

 		
 Post a new comment

 		
 Retrieve comment list

 		
 Retrieve comments count

 		
 Post like/dislike feedback

 		
 Post removal suggestions

 		
 JavaScript plugin

 		
 Frontend opinions

 		
 Build process

 		
 Set up the backend

 		
 Install frontend packages

 		
 Code structure

 		
 Improvements and contributions

 		
 Filters and template tags

 		
 Tag render_xtdcomment_tree

 		
 Example usage

 		
 Tag get_xtdcomment_tree

 		
 Example usage

 		
 Tag render_last_xtdcomments

 		
 Example usage

 		
 Tag get_last_xtdcomments

 		
 Example usage

 		
 Tag get_xtdcomment_count

 		
 Example usage

 		
 Filter xtd_comment_gravatar

 		
 Filter xtd_comment_gravatar_url

 		
 Filter render_markup_comment

 		
 Example usage

 		
 Filter can_receive_comments_from

 		
 Migrating to django-comments-xtd

 		
 Preparation

 		
 Populate comment data

 		
 Customizing django-comments-xtd

 		
 Custom Comments Demo

 		
 settings Module

 		
 models Module

 		
 forms Module

 		
 admin Module

 		
 Templates

 		
 Modifying comments with code

 		
 Internationalization

 		
 Contributions

 		
 Settings

 		
 COMMENTS_XTD_MAX_THREAD_LEVEL

 		
 COMMENTS_XTD_MAX_THREAD_LEVEL_BY_APP_MODEL

 		
 COMMENTS_XTD_CONFIRM_EMAIL

 		
 COMMENTS_XTD_FROM_EMAIL

 		
 COMMENTS_XTD_CONTACT_EMAIL

 		
 COMMENTS_XTD_FORM_CLASS

 		
 COMMENTS_XTD_MODEL

 		
 COMMENTS_XTD_LIST_ORDER

 		
 COMMENTS_XTD_MARKUP_FALLBACK_FILTER

 		
 COMMENTS_XTD_SALT

 		
 COMMENTS_XTD_SEND_HTML_EMAIL

 		
 COMMENTS_XTD_THREADED_EMAILS

 		
 COMMENTS_XTD_APP_MODEL_OPTIONS

 		
 COMMENTS_XTD_API_USER_REPR

 		
 Templates

 		
 email_confirmation_request

 		
 comment_tree.html

 		
 user_feedback.html

 		
 like.html

 		
 liked.html

 		
 dislike.html

 		
 disliked.html

 		
 discarded.html

 		
 email_followup_comment

 		
 comment.html

 		
 posted.html

 		
 reply.html

 		
 muted.html

 		
 only_users_can_post.html

 		
 Use cases

 		
 Only signed in users can comment

 		
 Simple example using only the backend

 		
 Full featured example using backend and frontend code

_static/up.png

_images/markdown-input.png
May 18, 2017, 7:10 a.m. - Alice
Sed id [pharetra](https://www.example.com) lorem. **Pellentesque** ornare
tincidunt dapibus. Aenean ac odio libero.

_images/only-users-can-post.png
"I don't think the human race will survive the next thousand years, unless we spread into space.
There are too many accidents that can befall life on a single planet. But I'm an optimist. We will
reach out to the stars."

Back to the articles list

1comment.
Only registered users can post comments. Please, login.

July'5,2020, 6:55 a.m. - Adrministrator modestor -~
It can't be more actual, yet said in 2001.

_images/flag-counter.png
Repl

Nov. 19,2018, 302 p.- Alce omi
Proin ac mollis ante. Fusce at erat eleifend, commodo dui eget, feugiat justo.
Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos
himenaeos. Suspendisse facilisis laoreet efficitur. Integer evismod augue quis
fringilla pharetra. Nulla condimentum, ante eget sagittis porttitor, orci lacus
ormare sapien, condimentum volutpat Leo lacus vitae libero. Quisque non velit
id arcu luctus congue.

Repl

_images/markdown-comment.png
May 18, 2017, 7:10 a.m. - Alice
Sed id pharetra lorem. Pellentesque ornare tincidunt dapibus. Aenean ac odio libero.

_static/ajax-loader.gif

_images/reply-link.png
Nov. 6, 2018, :20 pm. - Fulnito de Tal modestor 1
In quis ante at nisL sollicitudin varius. Fusce aliquet auctor sapien, eu venenatis tellus
consectetur quis. Nam rhoncus lobortis risus, eget dictum magna maximus vel.
Suspendisse rhoncus, massa vitae cursus finibus, mauris ex malesuada nisL, sit amet
dictum magna Leo egestas tellus.

Eenyy

Nov. 19,2018, 302 p.- Alce
Proin ac mollis ante. Fusce at erat eleifend, commodo dui eget, feugiat justo.
Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos
himenaeos. Suspendisse facilisis laoreet efficitur. Integer evismod augue quis
fringilla pharetra. Nulla condimentum, ante eget sagittis porttitor, orci lacus
ormare sapien, condimentum volutpat Leo lacus vitae libero. Quisque non velit
id arcu luctus congue.

_images/update-comment-tree.png
3 comments.

Post your comment

Your comment

Notify me about follow-up comments

There is T new commet UPDATE

Nov. 29, 2018, 5:08 a.m. - Alice »i

n ‘Aenean hendrerit elit eu lorem cursus molestie. Donec et sapien non massa lacinia suscipit in
sit amet tortor. Integer vulputate, est id mollis malesuada, nisl enim volutpat lacus, id rhoncus
enim purus eget ante. Suspendisse ut ornare risus. Proin dignissim urna quis pellentesque
luctus.

"l Reply

@D - Nov. 29, 2018, 5:09 a.m. - Joe Bloggs modestor i
n Cras ante lorem, fringilla sed elit volutpat, sodales rutrum nulla. Curabitur aliquam
ullamcorper blandit. Maecenas id dapibus risus, at eleifend purus.
"' o Reply

Nov. 29,2018, 5:07 am. - Luis Lopez L]
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mauris tincidunt ipsum nulla, et

fermentum mi porttitor ac. Integer nec metus ac velit posuere posuere eu quis mauris. Integer
auctor dolor vitae ex dapibus fermentum. Curabitur congue mi in neque dictum, vel efficitur
augue pellentesque.

"' o Reply

_static/comment-bright.png

