
django-comments-xtd Documentation
Release 1.7.1

Daniel Rus Morales

May 30, 2020

Contents

1 Contents 3

Python Module Index 35

Index 37

i

ii

django-comments-xtd Documentation, Release 1.7.1

A Django pluggable application that can be used to add comments to your models. It extends the once official Django
Comments Framework with the following features:

1. Thread support, so comments can be nested.

2. Customizable maximum thread level, either for all models or on a per app.model basis.

3. Optional notifications on follow-up comments via email.

4. Mute links to allow cancellation of follow-up notifications.

5. Comment confirmation via email when users are not authenticated.

6. Comments hit the database only after they have been confirmed.

7. Registered users can like/dislike comments and can suggest comments removal.

8. Template tags to list/render the last N comments posted to any given list of app.model pairs.

9. Comments can be formatted in Markdown, reStructuredText, linebreaks or plain text.

10. Emails sent through threads (can be disable to allow other solutions, like a Celery app).

Contents 1

https://pypi.python.org/pypi/django-contrib-comments
https://pypi.python.org/pypi/django-contrib-comments

django-comments-xtd Documentation, Release 1.7.1

2 Contents

CHAPTER 1

Contents

1.1 Quick start guide

To get started using django-comments-xtd follow these steps:

1. pip install django-comments-xtd

2. Enable the “sites” framework by adding 'django.contrib.sites' to INSTALLED_APPS and defining
SITE_ID. Visit the admin site and be sure that the domain field of the Site instance points to the correct do-
main (localhost:8000 when running the default development server), as it will be used to create comment
verification URLs, follow-up cancellations, etc.

3. Add 'django_comments_xtd' and 'django_comments', in that order, to INSTALLED_APPS.

4. Set the COMMENTS_APP setting to 'django_comments_xtd'.

5. Set the COMMENTS_XTD_MAX_THREAD_LEVEL to N, being N the maximum level of threading up to which
comments will be nested in your project.

0: No nested comments:
Comment (level 0)
1: Nested up to level one:
Comment (level 0)
|-- Comment (level 1)
2: Nested up to level two:
Comment (level 0)
|-- Comment (level 1)
|-- Comment (level 2)
COMMENTS_XTD_MAX_THREAD_LEVEL = 2

The thread level can also be established on a per <app>.<model> basis by using the
COMMENTS_XTD_MAX_THREAD_LEVEL_BY_APP_MODEL setting. Use it to establish different maxi-
mum threading levels for each model. ie: no nested comments for quotes, up to thread level 2 for blog stories,
etc.

3

http://docs.djangoproject.com/en/3.0/_objects/ref/contrib/sites/#enabling-the-sites-framework
http://docs.djangoproject.com/en/3.0/_objects/ref/settings/#std:setting-INSTALLED_APPS
http://docs.djangoproject.com/en/3.0/_objects/ref/settings/#std:setting-SITE_ID
http://docs.djangoproject.com/en/3.0/_objects/ref/settings/#std:setting-INSTALLED_APPS
https://django-contrib-comments.readthedocs.io/en/latest/settings.html#std:setting-COMMENTS_APP

django-comments-xtd Documentation, Release 1.7.1

6. Set the COMMENTS_XTD_CONFIRM_EMAIL to True to require comment confirmation by email for no
logged-in users.

7. Run manage.py migrate to create the tables.

8. Add the URLs of the comments-xtd app to your project’s urls.py:

urlpatterns = [
...
url(r'^comments/', include('django_comments_xtd.urls')),
...

]

9. Customize your project’s email settings:

EMAIL_HOST = "smtp.mail.com"
EMAIL_PORT = "587"
EMAIL_HOST_USER = "alias@mail.com"
EMAIL_HOST_PASSWORD = "yourpassword"
DEFAULT_FROM_EMAIL = "Helpdesk <helpdesk@yourdomain>"

10. As of version 1.8 django-comments-xtd comes with templates styled with twitter-bootstrap v3 that allows you to
start using the app right away. If you want to build your own templates, use the comments templatetag module,
provided by the django-comments app. Create a comments directory in your templates directory and copy the
templates you want to customise from the Django Comments Framework. The following are the most important:

• comments/list.html, used by the render_comments_list templatetag.

• comments/form.html, used by the render_comment_form templatetag.

• comments/preview.html, used to preview the comment or when there are errors submitting it.

• comments/posted.html, which gets rendered after the comment is sent.

11. Add extra settings to control comments in your project. Check the available settings in the Django Comments
Framework and in the django-comments-xtd app.

These are the steps to quickly start using django-comments-xtd. Follow to the next page, the Tutorial, to read a detailed
guide that takes everything into account. In addition to the tutorial, the Demo projects implement several commenting
applications.

1.2 Tutorial

This tutorial guides you through the steps to use every feature of django-comments-xtd together with the Django
Comments Framework. The Django project used throughout the tutorial is available to download. Following the
tutorial will take about an hour, and it is highly recommended to get a comprehensive understanding of django-
comments-xtd.

Table of Contents

• Introduction

• Preparation

• Configuration

• Comment confirmation

4 Chapter 1. Contents

https://getbootstrap.com
https://django-contrib-comments.readthedocs.io/en/latest/quickstart.html#comment-template-tags
https://django-contrib-comments.readthedocs.io/en/latest/index.html
https://django-contrib-comments.readthedocs.io/en/latest/settings.html#settings-comments
https://django-contrib-comments.readthedocs.io/en/latest/settings.html#settings-comments
https://github.com/django/django-contrib-comments
https://github.com/django/django-contrib-comments
https://github.com/danirus/django-comments-xtd/example/tutorial.tar.gz

django-comments-xtd Documentation, Release 1.7.1

• Comments tags

• Moderation

– Disallow black listed domains

– Moderate on bad words

• Threads

– Different max thread levels

• Flags

– Removal suggestion

* Getting notifications

– Liked it, Disliked it

* Show the list of users

• Final notes

1.2.1 Introduction

Through the following sections the tutorial will cover the creation of a simple blog with stories to which we will add
comments, exercising each and every feature provided by both, django-comments and django-comments-xtd, from
comment post verification by mail to comment moderation and nested comments.

1.2.2 Preparation

Before we install any package we will set up a virtualenv and install everything we need in it.

$ mkdir ~/django-comments-xtd-tutorial
$ cd ~/django-comments-xtd-tutorial
$ virtualenv venv
$ source venv/bin/activate
(venv)$ pip install django-comments-xtd
(venv)$ wget https://github.com/danirus/django-comments-xtd/demo/tutorial.
→˓tar.gz
(venv)$ tar -xvzf tutorial.tar.gz
(venv)$ cd tutorial

By installing django-comments-xtd we install all its dependencies, Django and django-contrib-comments among them.
So we are ready to work on the project. Take a look at the content of the tutorial directory, it contains:

• A blog app with a Post model. It uses two generic class-based views to list the posts, and to show a given post
in detail.

• The templates directory, with a base.html template, a home.html template, and two templates for the blog app:
blog/post_list.html and blog/post_detail.html.

• The static directory with a css/bootstrap.min.css file (this file is a static asset available, when the app is in-
stalled, under the path django_comments_xtd/css/bootstrap.min.css).

• The tutorial directory containing the settings and urls modules.

• And a fixtures directory with data files to create the admin superuser (with admin password), the default site
and some blog posts.

1.2. Tutorial 5

django-comments-xtd Documentation, Release 1.7.1

Let’s finish the initial setup, load the fixtures and run the development server:

(venv)$ python manage.py migrate
(venv)$ python manage.py loaddata fixtures/*.json
(venv)$ python manage.py runserver

Head to http://localhost:8000 and visit the tutorial site. In the following section we will make changes to enable
django-comments-xtd.

1.2.3 Configuration

Now that the project is up and running we are ready to add comments. Edit the settings module, tutorial/
settings.py, and make the following changes:

INSTALLED_APPS = [
...
'django_comments_xtd',
'django_comments',
'blog',

]
...
COMMENTS_APP = 'django_comments_xtd'

Either enable sending mail messages to the console:
EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

Or set up the EMAIL_* settings so that Django can send emails:
EMAIL_HOST = "smtp.mail.com"
EMAIL_PORT = "587"
EMAIL_HOST_USER = "alias@mail.com"
EMAIL_HOST_PASSWORD = "yourpassword"
EMAIL_USE_TLS = True
DEFAULT_FROM_EMAIL = "Helpdesk <helpdesk@yourdomain>"

Edit the urls module of the project, democx/democx/urls.py, to mount the URL patterns of
django_comments_xtd to the path /comments/. The urls installed with django_comments_xtd include those re-
quired by django_comments too:

from django.conf.urls import include, url

urlpatterns = [
...
url(r'^comments/', include('django_comments_xtd.urls')),
...

]

Now let Django create the tables for the two new applications:

$ python manage.py migrate

Be sure that the domain field of the Site instance points to the correct domain, which for the development server is
expected to be localhost:8000. The value is used to create comment verifications, follow-up cancellations, etc.
Edit the site instance in the admin interface in case you were using a different value.

After these simple changes the project is ready to use comments, we just need to modify the blog templates.

6 Chapter 1. Contents

http://localhost:8000

django-comments-xtd Documentation, Release 1.7.1

1.2.4 Comment confirmation

In order to make django-comments-xtd request comment confirmation by mail we need to set the
COMMENTS_XTD_SALT setting. This setting helps obfuscating the comment before the user has approved its publi-
cation.

This is so because django-comments-xtd does not store comments in the server before they have been confirmed. This
way there is little to none possible comment spam flooding in the database. Comments are encoded in URLs and sent
for confirmation by mail. Only when the user clicks the confirmation URL the comment lands in the database.

This behaviour is disabled for authenticated users, and can be disabled for anonymous users too by simply setting
COMMENTS_XTD_CONFIRM_MAIL to False.

Now let’s append the following entry to the settings module to help obfuscating the comment before it is sent for
confirmation:

COMMENTS_XTD_SALT = (b"Timendi causa est nescire. "
b"Aequam memento rebus in arduis servare mentem.")

1.2.5 Comments tags

In order to be able to post comments to blog stories we need to edit the template file blog/post_detail.html
and load the comments templatetag module, which is provided by the Django Comments Framework:

{% load comments %}

We will apply changes in the the blog post detail template:

1. To show the number of comments posted to the blog story,

2. To list the comments already posted, and

3. To show the comment form, so that people can post comments.

By using the get_comment_count tag we will show the number of comments posted. Change the code around the
link element so that it looks like:

{% get_comment_count for object as comment_count %}
<div class="text-center" style="padding-top:20px">
Back to the post list
 ⋅
{{ comment_count }} comments have been posted.

</div>

Now let’s add the code to list the comments posted to the story. We can make use of two template tags,
render_comment_list and get_comment_list. The former renders a template with the comments while
the latter put the comment list in a variable in the context of the template.

When using the first, render_comment_list, with a blog.post object, Django will look for the template
list.html in the following directories:

comments/blog/post/list.html
comments/blog/list.html
comments/list.html

Both, django-contrib-comments and django-comments-xtd, provide the last of the list. The one in django-comments-
xtd includes twitter-bootstrap styling. Django will use the first template found, which depends on what application is
listed first in INSTALLED_APPS, django-comments-xtd in this case.

1.2. Tutorial 7

https://github.com/django/django-contrib-comments
https://django-contrib-comments.readthedocs.io/en/latest/quickstart.html#std:templatetag-get_comment_count
https://django-contrib-comments.readthedocs.io/en/latest/quickstart.html#std:templatetag-render_comment_list
https://django-contrib-comments.readthedocs.io/en/latest/quickstart.html#std:templatetag-get_comment_list
https://django-contrib-comments.readthedocs.io/en/latest/quickstart.html#std:templatetag-render_comment_list
http://getbootstrap.com
http://docs.djangoproject.com/en/3.0/_objects/ref/settings/#std:setting-INSTALLED_APPS

django-comments-xtd Documentation, Release 1.7.1

Let’s modify the blog/blog_detail.html template to make use of the render_comment_list tag to add
the list of comments. Add the following code at the end of the page, before the endblock tag:

{% if comment_count %}
<div class="comments">
{% render_comment_list for object %}

</div>
{% endif %}

Below the list of comments we want to display the comment form, so that users can send their own comments. There
are two tags available for the purpose, the render_comment_form and the get_comment_form. The former
renders a template with the comment form while the latter puts the form in the context of the template giving more
control over the fields.

At the moment we will use the first tag, render_comment_form. Again, add the following code before the
endblock tag:

{% if object.allow_comments %}
<div class="comment">
<h4 class="text-center">Your comment</h4>
<div class="well">

{% render_comment_form for object %}
</div>

</div>
{% endif %}

Finally, before completing this first set of changes, we could show the number of comments along with post titles in
the blog’s home page. Let’s edit blog/post_list.html and make the following changes:

{% extends "base.html" %}
{% load comments %}

...
<p class="date">
{% get_comment_count for object as comment_count %}
Published {{ object.publish }}
{% if comment_count %}
⋅ {{ comment_count }} comments
{% endif %}

</p>

Now we are ready to send comments. If you are logged in the admin site, your comments won’t need to be confirmed
by mail. To test the confirmation URL do logout of the admin interface. Bear in mind that EMAIL_BACKEND is set
up to send mail messages to the console, so look in the console after you post the comment and find the first long URL
in the message. To confirm the comment copy the link and paste it in the location bar of the browser.

The setting COMMENTS_XTD_MAX_THREAD_LEVEL is 0 by default, which means comments can not be nested.
Later in the threads section we will enable nested comments. Now we will set up comment moderation.

1.2.6 Moderation

One of the differences between django-comments-xtd and other commenting applications is the fact that by default it
requires comment confirmation by email when users are not logged in, a very effective feature to discard unwanted
comments. However there might be cases in which we would prefer to follow a different approach. The Django
Comments Framework has the moderation capabilities upon which we can build our own comment filtering.

8 Chapter 1. Contents

https://django-contrib-comments.readthedocs.io/en/latest/quickstart.html#std:templatetag-render_comment_list
https://django-contrib-comments.readthedocs.io/en/latest/quickstart.html#std:templatetag-render_comment_form
https://django-contrib-comments.readthedocs.io/en/latest/quickstart.html#std:templatetag-get_comment_form
https://django-contrib-comments.readthedocs.io/en/latest/quickstart.html#std:templatetag-render_comment_form
http://docs.djangoproject.com/en/3.0/_objects/ref/settings/#std:setting-EMAIL_BACKEND
http://django-contrib-comments.readthedocs.io/en/latest/moderation.html

django-comments-xtd Documentation, Release 1.7.1

Comment moderation is often established to fight spam, but may be used for other purposes, like triggering actions
based on comment content, rejecting comments based on how old is the subject being commented and whatnot.

In this section we want to set up comment moderation for our blog application, so that comments sent to a blog post
older than a year will be automatically flagged for moderation. Also we want Django to send an email to registered
MANAGERS of the project when the comment is flagged.

Let’s start adding our email address to the MANAGERS in the tutorial/settings.py module:

MANAGERS = (
('Joe Bloggs', 'joe.bloggs@example.com'),

)

Now we will create a new Moderator class that inherits from Django Comments Frammework’s
CommentModerator. This class enables moderation by defining a number of class attributes. Read more about
it in moderation options, in the official documentation of the Django Comments Framework.

We will also register our Moderator class with the django-comments-xtd’s moderator object. We use django-
comments-xtd’s object instead of django-contrib-comments’ because we still want to have confirmation by email for
non-registered users, nested comments, follow-up notifications, etc.

Let’s add those changes to the blog/model.py file:

...
Append these imports below the current ones.
from django_comments.moderation import CommentModerator
from django_comments_xtd.moderation import moderator

...

Add this code at the end of the file.
class PostCommentModerator(CommentModerator):

email_notification = True
auto_moderate_field = 'publish'
moderate_after = 365

moderator.register(Post, PostCommentModerator)

That makes it, moderation is ready. Visit any of the blog posts with a publish datetime older than a year and try to
send a comment. After confirming the comment you will see the django_comments_xtd/moderated.html
template, and your comment will be put on hold for approval.

If on the other hand you send a comment to a blog post created within the last year your comment will not be put in
moderation. Give it a try as a logged in user and as an anonymous user.

When sending a comment to a blog post with a user logged in the comment doesn’t have to be confirmed. However,
when you send it logged out the comment has to be confirmed by clicking on the confirmation link. Right after clicking
on the confirmation link the comment will be put on hold, pending for approval.

In both cases all mail addresses listed in the MANAGERS setting will receive a notification about the reception of a new
comment. If you did not received such message, you might need to review your email settings, or the console output.
Read about the mail settings above in the Configuration section.

A last note on comment moderation: comments pending for moderation have to be reviewed and eventually approved.
Don’t forget to visit the comments-xtd app in the admin interface. Tick the box to select those you want to approve,
choose Approve selected comments in the action dropdown at the top left of the comment list and click on the Go
button.

1.2. Tutorial 9

http://docs.djangoproject.com/en/3.0/_objects/ref/settings/#std:setting-MANAGERS
http://docs.djangoproject.com/en/3.0/_objects/ref/settings/#std:setting-MANAGERS
https://django-contrib-comments.readthedocs.io/en/latest/moderation.html#moderation-options
http://docs.djangoproject.com/en/3.0/_objects/ref/settings/#std:setting-MANAGERS
http://localhost:8000/admin/

django-comments-xtd Documentation, Release 1.7.1

Disallow black listed domains

In the remote case you wanted to disable comment confirmation by mail you might want to set up some sort of control
to reject spam.

In this section we will go through the steps to disable comment confirmation while enabling a comment filtering
solution based on Joe Wein’s blacklist of spamming domains. We will also add a moderation function that will put in
moderation comments containing badwords.

Let us first disable comment confirmation, edit the tutorial/settings.py file and add:

COMMENTS_XTD_CONFIRM_EMAIL = False

django-comments-xtd comes with a Moderator class that inherits from CommentModerator and implements
a method allow that will do the filtering for us. We just have to change blog/models.py and replace
CommentModerator with SpamModerator, as follows:

Remove the CommentModerator imports and leave only this:
from django_comments_xtd.moderation import moderator, SpamModerator

Our class Post PostCommentModerator now inherits from SpamModerator
class PostCommentModerator(SpamModerator):

...

moderator.register(Post, PostCommentModerator)

Now we can add a domain to the BlackListed model in the admin interface. Or we could download a blacklist
from Joe Wein’s website and load the table with actual spamming domains.

Once we have a BlackListed domain, try to send a new comment and use an email address with such a domain.
Be sure to log out before trying, otherwise django-comments-xtd will use the logged in user credentials and ignore the
email given in the comment form. Also be sure to post the comment to a story with a publishing date within the last
365 days, otherwise it will enter in moderation regardless of the mail address domain.

Sending a comment with an email address of the blacklisted domain triggers a Comment post not allowed response,
which would have been a HTTP 400 Bad Request response with DEBUG = False in production.

Moderate on bad words

Let’s now create our own Moderator class by subclassing SpamModerator. The goal is to provide a moderate
method that looks in the content of the comment and returns False whenever it finds a bad word in the message. The
effect of returning False is that comment’s is_public attribute will be put to False and therefore the comment
will be in moderation.

The blog application comes with a bad word list in the file blog/badwords.py

We assume we already have a list of BlackListed domains and we don’t need further spam control. So we will
disable comment confirmation by email. Edit the settings.py file:

COMMENTS_XTD_CONFIRM_EMAIL = False

Now edit blog/models.py and add the code corresponding to our new PostCommentModerator:

Below the other imports:
from django_comments_xtd.moderation import moderator, SpamModerator
from blog.badwords import badwords

(continues on next page)

10 Chapter 1. Contents

http://www.joewein.net/spam/blacklist.htm
https://gist.github.com/ryanlewis/a37739d710ccdb4b406d
http://localhost:8000/admin/
http://www.joewein.net/spam/blacklist.htm

django-comments-xtd Documentation, Release 1.7.1

(continued from previous page)

...

class PostCommentModerator(SpamModerator):
email_notification = True

def moderate(self, comment, content_object, request):
Make a dictionary where the keys are the words of the message and
the values are their relative position in the message.
def clean(word):

ret = word
if word.startswith('.') or word.startswith(','):

ret = word[1:]
if word.endswith('.') or word.endswith(','):

ret = word[:-1]
return ret

lowcase_comment = comment.comment.lower()
msg = dict([(clean(w), i)

for i, w in enumerate(lowcase_comment.split())])
for badword in badwords:

if isinstance(badword, str):
if locase_comment.find(badword) > -1:

return True
else:

lastindex = -1
for subword in badword:

if subword in msg:
if lastindex > -1:

if msg[subword] == (lastindex + 1):
lastindex = msg[subword]

else:
lastindex = msg[subword]

else:
break

if msg.get(badword[-1]) and msg[badword[-1]] == lastindex:
return True

return super(PostCommentModerator, self).moderate(comment,
content_object,
request)

moderator.register(Post, PostCommentModerator)

Now we can try to send a comment with any of the bad words listed in badwords. After sending the comment we
will see the content of the django_comments_xtd/moderated.html template and the comment will be put
in moderation.

If you enable comment confirmation by email, the comment will be put on hold after the user clicks on the confirmation
link in the email.

1.2.7 Threads

Up until this point in the tutorial django-comments-xtd has been configured to disallow nested comments. Every
comment is at thread level 0. It is so because by default the setting COMMENTS_XTD_MAX_THREAD_LEVEL is set
to 0.

When the COMMENTS_XTD_MAX_THREAD_LEVEL is greater than 0, comments below the maximum thread level

1.2. Tutorial 11

https://gist.github.com/ryanlewis/a37739d710ccdb4b406d

django-comments-xtd Documentation, Release 1.7.1

may receive replies that will be nested up to the maximum thread level. A comment in a the thread level below the
COMMENTS_XTD_MAX_THREAD_LEVEL can show a Reply link that allows users to send nested comments.

In this section we will enable nested comments by modifying COMMENTS_XTD_MAX_THREAD_LEVEL and apply
some changes to our blog_detail.html template.

We can make use of two template tags, render_xtdcomment_tree and get_xtdcomment_tree. The former
renders a template with the comments while the latter put the comments in a nested data structure in the context of the
template.

We will also introduce the setting COMMENTS_XTD_LIST_ORDER, that allows altering the default order in which
we get the list of comments. By default comments are ordered by thread and their position inside the thread, which
turns out to be in ascending datetime of arrival. In this example we would like to list newer comments first.

Let’s start by editing tutorial/settings.py to set up a maximum thread level of 1 and a comment ordering to
retrieve newer comments first:

COMMENTS_XTD_MAX_THREAD_LEVEL = 1 # default is 0
COMMENTS_XTD_LIST_ORDER = ('-thread_id', 'order') # default is ('thread_id',
→˓ 'order')

Now we have to modify the blog post detail template to load the comments_xtd templatetag and make use of
render_xtdcomment_tree. We also want to move the comment form from the bottom of the page to a more
visible position right below the blog post, followed by the list of comments.

Edit blog/post_detail.html to make it look like follows:

{% extends "base.html" %}
{% load comments %}
{% load comments_xtd %}

{% block title %}{{ object.title }}{% endblock %}

{% block content %}
<h3 class="page-header text-center">{{ object.title }}</h3>
<p class="small text-center">{{ object.publish|date:"l, j F Y" }}</p>
<p>
{{ object.body|linebreaks }}

</p>

{% get_comment_count for object as comment_count %}
<div class="text-center" style="padding-top:20px">
Back to the post list
 ⋅
{{ comment_count }} comments have been posted.

</div>

{% if object.allow_comments %}
<div class="comment">
<h4 class="text-center">Your comment</h4>
<div class="well">
{% render_comment_form for object %}

</div>
</div>
{% endif %}

{% if comment_count %}
<hr/>
<ul class="media-list">

(continues on next page)

12 Chapter 1. Contents

django-comments-xtd Documentation, Release 1.7.1

(continued from previous page)

{% render_xtdcomment_tree for object %}

{% endif %}
{% endblock %}

The tag render_xtdcomment_tree renders the template django_comments_xtd/comment_tree.
html.

Different max thread levels

There might be cases in which nested comments have a lot of sense and others in which we would prefer a plain
comment sequence. We can handle both scenarios under the same Django project with django-comments-xtd.

We just have to use both settings, the COMMENTS_XTD_MAX_THREAD_LEVEL and
COMMENTS_XTD_MAX_THREAD_LEVEL_BY_APP_MODEL. The former would be set to the default wide
site thread level while the latter would be a dictionary of app.model keys and maximum thread level values.

If we wanted to disable nested comments site wide, and enable nested comments up to level one for blog posts, we
would need to set it up as follows in our settings.py module:

COMMENTS_XTD_MAX_THREAD_LEVEL = 0 # site wide default
COMMENTS_XTD_MAX_THREAD_LEVEL_BY_MODEL = {

Objects of the app blog, model post, can be nested
up to thread level 1.

'blog.post': 1,
}

1.2.8 Flags

The Django Comments Framework supports flagging comments, so comments can be flagged for:

• Removal suggestion, when a registered user suggests the removal of a comment.

• Moderator deletion, when a comment moderator marks the comment as deleted.

• Moderator approval, when a comment moderator sets the comment as approved.

django-comments-xtd expands flagging with two more flags:

• Liked it, when a registered user likes the comment.

• Disliked it, when a registered user dislikes the comment.

In this section we will see how to enable a user with the capacity to flag a comment for removal with the Removal
suggestion flag, how to express likeability, conformity, acceptance or acknowledgement with the Liked it flag, and
how to express the opposite with the Disliked it flag.

One important requirement to flag a comment is that the user setting the flag must be authenticated. In other words,
comments can not be flagged by anonymous users.

Removal suggestion

Let us enable the comment removal flag. Edit the blog/post_detail.html template, and at the bottom of the
file change the render_xtdcomment_tree templatetag by adding the argument allow_flagging:

1.2. Tutorial 13

https://django-contrib-comments.readthedocs.io/en/latest/example.html#flagging

django-comments-xtd Documentation, Release 1.7.1

...
<ul class="media-list">
{% render_xtdcomment_tree for object allow_flagging %}

The allow_flagging argument makes the templatetag populate a variable allow_flagging = True in the context
in which django_comments_xtd/comment_tree.html is rendered.

Now let’s suggest a removal. First we need to login in the admin interface so that we are not an anonymous user. Then
we can visit any of the blog posts we sent comments to. When hovering the comments we must see a flag at the right
side of the comment’s header. After we click on it we land in a page in which we are requested to confirm our removal
suggestion. Finally, click on the red Flag button to confirm the request.

Once we have flagged a comment we can find the flag entry in the admin interface, in the Comment flags model,
under the Django Comments application.

Getting notifications

A user might want to flag a comment on the basis of a violation of our site’s terms of use, maybe on hate speech
content, racism or the like. To prevent a comment from staying published long after it has been flagged we might want
to receive notifications on flagging events.

For such purpose django-comments-xtd provides the class XtdCommentModerator, which extends django-
contrib-comments’ CommentModerator.

In addition to all the options of its parent class, XtdCommentModerator offers the
removal_suggestion_notification attribute, that when set to True makes Django send a mail to
all the MANAGERS on every Removal suggestion flag created.

Let’s use XtdCommentModerator, edit blog/models.py and if you are already using
the class SpamModerator, which alreadt inherits from XtdCommentModerator, just add
removal_suggestion_notification = True to your PostCommentModeration class. Other-
wise add the following code:

from django_comments_xtd.moderation import moderator, XtdCommentModerator

...
class PostCommentModerator(XtdCommentModerator):

removal_suggestion_notification = True

moderator.register(Post, PostCommentModerator)

Be sure that PostCommentModerator is the only moderation class registered for the Post model, and be
sure as well that the MANAGERS setting contains a valid email address. The message sent is based on the
django_comments_xtd/removal_notification_email.txt template, already provided within django-
comments-xtd. After these changes flagging a comment with a Removal suggestion will trigger a notification by
mail.

Liked it, Disliked it

Django-comments-xtd adds two new flags: the Liked it and the Disliked it flags.

Unlike the Removal suggestion flag, the Liked it and Disliked it flags are mutually exclusive. So that a user can’t
like and dislike a comment at the same time, only the last action counts. Users can like/dislike at any time and only
the last action will prevail.

14 Chapter 1. Contents

http://localhost:8000/admin/
http://localhost:8000/admin/
https://django-contrib-comments.readthedocs.io/en/latest/moderation.html#moderation-options
http://docs.djangoproject.com/en/3.0/_objects/ref/settings/#std:setting-MANAGERS
http://docs.djangoproject.com/en/3.0/_objects/ref/settings/#std:setting-MANAGERS

django-comments-xtd Documentation, Release 1.7.1

In this section we will make changes in the tutorial project to give our users the capacity to like or dislike com-
ments. We will make changes in the blog/post_detail.html template to introduce a new argument in the
render_xtdcomment_tree tag:

<ul class="media-list">
{% render_xtdcomment_tree for object allow_flagging allow_feedback %}

The allow_feedback argument makes the templatetag populate a variable allow_feedback = True in the con-
text in which django_comments_xtd/comment_tree.html is rendered.

Having the new like/dislike links in place, if we click on any of them we will end up in either the
django_comments_xtd/like.html or the django_comments_xtd/dislike.html templates, which
are meant to request the user a confirmation for the operation.

Show the list of users

Once the like/dislike flagging is enabled we might want to display the users who actually liked/disliked comments.

Again, by addind an argument to the render_xtdcomment_tree templatetag we can get rendered the
includes/django_comments_xtd/user_feedback.html with the list of participants.

Change the blog/post_detail.html to add the argument show_feedback. For this functionality to work
we have to add a bit of JavaScript code. As django-comments-xtd templates use twitter-bootstrap we will load jQuery
and twitter-bootstrap JavaScript libraries from their respective default CDNs too:

<ul class="media-list">
{% render_xtdcomment_tree for object allow_flagging allow_feedback show_

→˓feedback %}

{% block extra-js %}
<script src="https://code.jquery.com/jquery-3.2.1.slim.min.js"

integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g="
crossorigin="anonymous"></script>

<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.
→˓min.js"

integrity="sha384-
→˓Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa"

crossorigin="anonymous"></script>
<script>
$(function () {
$('[data-toggle="popover"]').popover({'html':true})

})</script>
{% endblock %}

1.2.9 Final notes

We have reached the end of the tutorial. I hope you got enough to start using django-comments-xtd in your own
project.

The following page introduces the Demo projects. The simple demo is a straightforward project to provide comment
confirmation by mail, with follow-up notifications and mute links. The custom demo is an example about how to ex-
tend django-comments-xtd Comment model with new attributes. The comp demo shows a project using the complete
set of features provided by both django-contrib-comments and django-comments-xtd.

1.2. Tutorial 15

http://getbootstrap.com

django-comments-xtd Documentation, Release 1.7.1

Checkout the Control Logic page to understand how django-comments-xtd works along with django-contrib-
comments. Read on Filters and Template Tags to see in detail the list of template tags and filters offered. The
page on Customizing django-comments-xtd goes through the steps to extend the app with a quick example and little
prose. Read the Settings page and the Templates page to get to know how you can customize the default behaviour
and default look and feel.

If you want to help, please, report any bug or enhancement directly to the github page of the project. Your contributions
are welcome.

1.3 Demo projects

Django-comments-xtd comes with three demo projects:

1. simple: Single model with non-threaded comments

2. custom: Single model with comments provided by a new app that extends django-comments-xtd. The new
comment model adds a title field to the XtdComment class. Find more details in Customizing django-
comments-xtd.

3. comp: Several models with maximum thread level defined on per app.model pair, moderation, removal sugges-
tion flag, like/dislike flags, and list of users who liked/disliked comments.

Visit the example directory within the repository in GitHub for a quick look.

Table of Contents

• Setup

• Simple demo

• Custom demo

• Comp demo

1.3.1 Setup

The recommended way to run the demo sites is in its own virtualenv. Once in a new virtualenv, clone the code and cd
into any of the 3 demo sites. Then run the migrate command and load the data in the fixtures directory:

$ virtualenv venv
$ source venv/bin/activate
(venv)$ git clone git://github.com/danirus/django-comments-xtd.git
(venv)$ cd django-comments-xtd/example/[simple|custom|comp]
(venv)$ python manage.py migrate
(venv)$ python manage.py loaddata ../fixtures/auth.json
(venv)$ python manage.py loaddata ../fixtures/sites.json
(venv)$ python manage.py loaddata ../fixtures/articles.json
(venv)$ python manage.py runserver

Fixtures data provide:

• An admin User, with password admin

• A default Site with domain localhost:8000 so that URLs sent in mail messages use already the URL of
the development web server of Django.

16 Chapter 1. Contents

https://github.com/danirus/django-comments-xtd
http://github.com/danirus/django-comments-xtd/tree/master/example
http://www.virtualenv.org/en/latest/

django-comments-xtd Documentation, Release 1.7.1

• A couple of Article objects to which the user can post comments.

By default mails are sent directly to the console using the console.EmailBackend. Comment out
EMAIL_BACKEND in the settings module to send actual mails. You will need working values for all the EMAIL_
settings.

1.3.2 Simple demo

The simple example features:

1. An Articles App, with a model Article whose instances accept comments.

2. Confirmation by mail is required before the comment hit the database, unless
COMMENTS_XTD_CONFIRM_EMAIL is set to False. Authenticated users don’t have to confirm com-
ments.

3. Follow up notifications via mail.

4. Mute links to allow cancellation of follow-up notifications.

5. It uses the template tag render_markup_comment to render comment content. So you can use line breaks,
Markdown or reStructuredText to format comments. To use special formatting, start the comment with the line
#!<markup-lang> being <markup-lang> either markdown, restructuredtext or linebreaks.

6. No nested comments.

Give it a try and test the features. Setup the project as explained above, run the development server, and visit http:
//localhost:8000/.

• Log out from the admin site to post comments, otherwise they will be automatically confirmed and no email
will be sent.

• When adding new articles in the admin interface be sure to tick the box allow comments, otherwise comments
won’t be allowed.

• Send new comments with the Follow-up box ticked and a different email address. You won’t receive follow-up
notifications for comments posted from the same email address the new comment is being confirmed from.

• Click on the Mute link on the Follow-up notification email and send another comment. You will not receive
further notifications.

1.3.3 Custom demo

The simple_threads demo site extends the simple demo functionality featuring:

• Thread support up to level 2

1. Visit http://localhost:8000/ and look at the first article page with 9 comments.

2. See the comments in the admin interface too:

• The first field represents the thread level.

• When in a nested comment the first field refers to the parent comment.

1.3.4 Comp demo

The multiple demo allows users post comments to three different type of instances: stories, quotes, and releases.
Stories and quotes belong to the blog app while releases belong to the projects app. The demo shows the blog

1.3. Demo projects 17

http://localhost:8000/
http://localhost:8000/
http://localhost:8000/

django-comments-xtd Documentation, Release 1.7.1

homepage with the last 5 comments posted to either stories or quotes and a link to the complete paginated list of
comments posted to the blog. It features:

• Definition of maximum thread level on a per app.model basis.

• Use of comments_xtd template tags, get_xtdcomment_count, render_last_xtdcomments,
get_last_xtdcomments, and the filter render_markup_comment.

1. Visit http://localhost:8000/ and take a look at the Blog and Projects pages.

• The Blog contains Stories and Quotes. Instances of both models have comments. The blog index page shows
the last 5 comments posted to either stories or quotes. It also gives access to the complete paginated list of
comments.

• Project releases have comments as well but are not included in the complete paginated list of comments shown
in the blog.

2. To render the last 5 comments the site uses:

• The templatetag {% render_last_xtdcomments 5 for blog.story blog.quote
%}

• And the following template files from the demos/multiple/templates directory:

• django_comments_xtd/blog/story/comment.html to render comments posted to sto-
ries

• django_comments_xtd/blog/quote/comment.html to render comments posted to
quotes

• You may rather use a common template to render comments:

• For all blog app models: django_comments_xtd/blog/comment.html

• For all the website models: django_comments_xtd/comment.html

3. To render the complete paginated list of comments the site uses:

• An instance of a generic ListView class declared in blog/urls.py that uses the following
queryset:

• XtdComment.objects.for_app_models("blog.story", "blog.quote")

4. The comment posted to the story Net Neutrality in Jeopardy starts with a specific line to get the content
rendered as reStructuredText. Go to the admin site and see the source of the comment; it’s the one sent by Alice
to the story 2.

• To format and render a comment in a markup language, make sure the first line of the comment looks
like: #!<markup-language> being <markup-language> any of the following options:

• markdown

• restructuredtext

• linebreaks

• Then use the filter render_markup_comment with the comment field in your template to inter-
pret the content (see demos/multiple/templates/comments/list.html).

1.4 Control Logic

Following is the application control logic described in 4 actions:

1. The user visits a page that accepts comments. Your app or a 3rd. party app handles the request:

18 Chapter 1. Contents

http://localhost:8000/

django-comments-xtd Documentation, Release 1.7.1

a. Your template shows content that accepts comments. It loads the comments templatetag and using tags as
render_comment_list and render_comment_form the template shows the current list of comments
and the post your comment form.

2. The user clicks on preview. Django Comments Framework post_comment view handles the request:

a. Renders comments/preview.html either with the comment preview or with form errors if any.

3. The user clicks on post. Django Comments Framework post_comment view handles the request:

a. If there were form errors it does the same as in point 2.

b. Otherwise creates an instance of TmpXtdComment model: an in-memory representation of the
comment.

c. Send signal comment_will_be_posted and comment_was_posted. The django-
comments-xtd receiver on_comment_was_posted receives the second signal with the
TmpXtdComment instance and does as follows:

• If the user is authenticated or confirmation by email is not required (see Settings):

• An instance of XtdComment hits the database.

• An email notification is sent to previous comments followers telling them about the new
comment following up theirs. Comment followers are those who ticked the box Notify me
about follow up comments via email.

• Otherwise a confirmation email is sent to the user with a link to confirm the comment.
The link contains a secured token with the TmpXtdComment. See below Creating the
secure token for the confirmation URL.

d. Pass control to the next parameter handler if any, or render the comments/posted.html tem-
plate:

• If the instance of XtdComment has already been created, redirect to the the comments’s absolute
URL.

• Otherwise the template content should inform the user about the confirmation request sent by email.

4. The user clicks on the confirmation link, in the email message. Django-comments-xtd confirm view handles
the request:

a. Checks the secured token in the URL. If it’s wrong returns a 404 code.

b. Otherwise checks whether the comment was already confirmed, in such a case returns a 404 code.

c. Otherwise sends a confirmation_received signal. You can register a receiver to this signal to do some
extra process before approving the comment. See Signal and receiver. If any receiver returns False the comment
will be rejected and the template django_comments_xtd/discarded.html will be rendered.

d. Otherwise an instance of XtdComment finally hits the database, and

e. An email notification is sent to previous comments followers telling them about the new comment following up
theirs.

1.4.1 Creating the secure token for the confirmation URL

The Confirmation URL sent by email to the user has a secured token with the comment. To create the token Django-
comments-xtd uses the module signed.py authored by Simon Willison and provided in Django-OpenID.

django_openid.signed offers two high level functions:

• dumps: Returns URL-safe, sha1 signed base64 compressed pickle of a given object.

1.4. Control Logic 19

http://github.com/simonw/django-openid

django-comments-xtd Documentation, Release 1.7.1

• loads: Reverse of dumps(), raises ValueError if signature fails.

A brief example:

>>> signed.dumps("hello")
'UydoZWxsbycKcDAKLg.QLtjWHYe7udYuZeQyLlafPqAx1E'

>>> signed.loads('UydoZWxsbycKcDAKLg.QLtjWHYe7udYuZeQyLlafPqAx1E')
'hello'

>>> signed.loads('UydoZWxsbycKcDAKLg.QLtjWHYe7udYuZeQyLlafPqAx1E-modified')
BadSignature: Signature failed: QLtjWHYe7udYuZeQyLlafPqAx1E-modified

There are two components in dump’s output UydoZWxsbycKcDAKLg.QLtjWHYe7udYuZeQyLlafPqAx1E,
separatad by a ‘.’. The first component is a URLsafe base64 encoded pickle of the object passed to dumps(). The
second component is a base64 encoded hmac/SHA1 hash of “$first_component.$secret”.

Calling signed.loads(s) checks the signature BEFORE unpickling the object -this protects against malformed pickle
attacks. If the signature fails, a ValueError subclass is raised (actually a BadSignature).

Signal and receiver

In addition to the signals sent by the Django Comments Framework, django-comments-xtd sends the following signal:

• confirmation_received: Sent when the user clicks on the confirmation link and before the XtdComment
instance is created in the database.

• comment_thread_muted: Sent when the user clicks on the mute link, in a follow-up notification.

1.4.2 Sample use of the confirmation_received signal

You might want to register a receiver for confirmation_received. An example function receiver could check
the time stamp in which a user submitted a comment and the time stamp in which the confirmation URL has been
clicked. If the difference between them is over 7 days we will discard the message with a graceful “sorry, it’s a too
old comment” template.

Extending the demo site with the following code will do the job:

#--
append the below code to demos/simple/views.py:

from datetime import datetime, timedelta
from django_comments_xtd import signals

def check_submit_date_is_within_last_7days(sender, data, request, **kwargs):
plus7days = timedelta(days=7)

if data["submit_date"] + plus7days < datetime.now():
return False

signals.confirmation_received.connect(check_submit_date_is_within_last_
→˓7days)

#---
change get_comment_create_data in django_comments_xtd/forms.py to cheat a
bit and make Django believe that the comment was submitted 7 days ago:

def get_comment_create_data(self):

(continues on next page)

20 Chapter 1. Contents

https://docs.djangoproject.com/en/1.3/ref/contrib/comments/signals/

django-comments-xtd Documentation, Release 1.7.1

(continued from previous page)

from datetime import timedelta #
→˓ADD THIS

data = super(CommentForm, self).get_comment_create_data()
data['followup'] = self.cleaned_data['followup']
if settings.COMMENTS_XTD_CONFIRM_EMAIL:

comment must be verified before getting approved
data['is_public'] = False
data['submit_date'] = datetime.datetime.now() - timedelta(days=8) #

→˓ADD THIS
return data

Try the simple demo site again and see that the django_comments_xtd/discarded.html template is rendered after click-
ing on the confirmation URL.

Maximum Thread Level

Nested comments are disabled by default, to enable them use the following settings:

• COMMENTS_XTD_MAX_THREAD_LEVEL: an integer value

• COMMENTS_XTD_MAX_THREAD_LEVEL_BY_APP_MODEL: a dictionary

Django-comments-xtd inherits the flexibility of django-contrib-comments framework, so that developers can plug it
to support comments on as many models as they want in their projects. It is as suitable for one model based project,
like comments posted to stories in a simple blog, as for a project with multiple applications and models.

The configuration of the maximum thread level on a simple project is done by declaring the
COMMENTS_XTD_MAX_THREAD_LEVEL in the settings.py file:

COMMENTS_XTD_MAX_THREAD_LEVEL = 2

Comments then could be nested up to level 2:

<In an instance detail page that allows comments>

First comment (level 0)
|-- Comment to First comment (level 1)

|-- Comment to Comment to First comment (level 2)

Comments posted to instances of every model in the project will allow up to level 2 of threading.

On a project that allows users posting comments to instances of different models, the developer may want to declare
a maximum thread level on a per app.model basis. For example, on an imaginary blog project with stories, quotes,
diary entries and book/movie reviews, the developer might want to define a default, project wide, maximum thread
level of 1 for any model and an specific maximum level of 5 for stories and quotes:

COMMENTS_XTD_MAX_THREAD_LEVEL = 1
COMMENTS_XTD_MAX_THREAD_LEVEL_BY_APP_MODEL = {

'blog.story': 5,
'blog.quote': 5,

}

So that blog.review and blog.diaryentry instances would support comments nested up to level 1, while
blog.story and blog.quote instances would allow comments nested up to level 5.

1.4. Control Logic 21

https://docs.djangoproject.com/en/1.4/ref/contrib/comments/

django-comments-xtd Documentation, Release 1.7.1

1.5 Filters and Template Tags

Django-comments-xtd provides 5 template tags and 3 filters. Load the module to make use of them in your templates:

{% load comments_xtd %}

Table of Contents

• Tag render_xtdcomment_tree

• Tag get_xtdcomment_tree

• Tag render_last_xtdcomments

• Tag get_last_xtdcomments

• Tag get_xtdcomment_count

• Filter xtd_comment_gravatar

• Filter xtd_comment_gravatar_url

• Filter render_markup_comment

1.5.1 Tag render_xtdcomment_tree

Tag syntax:

{% render_xtdcomment_tree [for <object>] [with var_name_1=<obj_1> var_name_2=
→˓<obj_2>]

[allow_flagging] [allow_feedback] [show_feedback]
[using <template>] %}

Renders the threaded structure of comments posted to the given object using the first template found from the list:

• django_comments_xtd/<app>/<model>/comment_tree.html

• django_comments_xtd/<app>/comment_tree.html

• django_comments_xtd/comment_tree.html (provided with the app)

It expects either an object specified with the for <object> argument, or a variable named comments, which
might be present in the context or received as comments=<comments-object>. When the for <object>
argument is specified, it retrieves all the comments posted to the given object, ordered by the thread_id and order
within the thread, as stated by the setting COMMENTS_XTD_LIST_ORDER.

It supports 4 optional arguments:

• allow_flagging, enables the comment removal suggestion flag. Clicking on the removal suggestion flag
redirects to the login view whenever the user is not authenticated.

• allow_feedback, enables the like and dislike flags. Clicking on any of them redirects to the login view
whenever the user is not authenticated.

• show_feedback, shows two list of users, of those who like the comment and of those who don’t like it. By
overriding includes/django_comments_xtd/user_feedback.html you could show the lists only
to authenticated users.

22 Chapter 1. Contents

django-comments-xtd Documentation, Release 1.7.1

• using <template_path>, makes the templatetag use a different template, instead of the default one,
django_comments_xtd/comment_tree.html

Example usage

In the usual scenario the tag is used in the object detail template, i.e.: blog/article_detail.html, to include
all comments posted to the article, in a tree structure:

{% render_xtdcomment_tree for article allow_flagging allow_feedback show_
→˓feedback %}

1.5.2 Tag get_xtdcomment_tree

Tag syntax:

{% get_xtdcomment_tree for [object] as [varname] [with_feedback] %}

Returns a dictionary to the template context under the name given in [varname] with the comments posted to the
given [object]. The dictionary has the form:

{
'comment': xtdcomment_object,
'children': [list_of_child_xtdcomment_dicts]

}

The comments will be ordered by the thread_id and order within the thread, as stated by the setting
COMMENTS_XTD_LIST_ORDER.

When the optional argument with_feedback is specified the returned dictionary will contain two additional at-
tributes with the list of users who liked the comment and the list of users who disliked it:

{
'xtdcomment': xtdcomment_object,
'children': [list_of_child_xtdcomment_dicts],
'likedit': [user_a, user_b, ...],
'dislikedit': [user_n, user_m, ...]

}

Example usage

Get an ordered dictionary with the comments posted to a given blog story and store the dictionary in a template context
variabled called comment_tree:

{% get_xtdcomment_tree for story as comments_tree with_feedback %}

1.5.3 Tag render_last_xtdcomments

Tag syntax:

{% render_last_xtdcomments [N] for [app].[model] [[app].[model] ...] %}

1.5. Filters and Template Tags 23

django-comments-xtd Documentation, Release 1.7.1

Renders the list of the last N comments for the given pairs <app>.<model> using the following search list for
templates:

• django_comments_xtd/<app>/<model>/comment.html

• django_comments_xtd/<app>/comment.html

• django_comments_xtd/comment.html

Example usage

Render the list of the last 5 comments posted, either to the blog.story model or to the blog.quote model. See it in action
in the Multiple Demo Site, in the blog homepage, template blog/homepage.html:

{% render_last_xtdcomments 5 for blog.story blog.quote %}

1.5.4 Tag get_last_xtdcomments

Tag syntax:

{% get_last_xtdcomments [N] as [varname] for [app].[model] [[app].[model] ...] %}

Gets the list of the last N comments for the given pairs <app>.<model> and stores it in the template context whose
name is defined by the as clause.

Example usage

Get the list of the last 10 comments two models, Story and Quote, have received and store them in the context
variable last_10_comment. You can then loop over the list with a for tag:

{% get_last_xtdcomments 10 as last_10_comments for blog.story blog.quote %}
{% if last_10_comments %}

{% for comment in last_10_comments %}
<p>{{ comment.comment|linebreaks }}</p> ...

{% endfor %}
{% else %}

<p>No comments</p>
{% endif %}

1.5.5 Tag get_xtdcomment_count

Tag syntax:

{% get_xtdcomment_count as [varname] for [app].[model] [[app].[model] ...] %}

Gets the comment count for the given pairs <app>.<model> and populates the template context with a variable
containing that value, whose name is defined by the as clause.

Example usage

Get the count of comments the model Story of the app blog have received, and store it in the context variable
comment_count:

24 Chapter 1. Contents

django-comments-xtd Documentation, Release 1.7.1

{% get_xtdcomment_count as comment_count for blog.story %}

Get the count of comments two models, Story and Quote, have received and store it in the context variable
comment_count:

{% get_xtdcomment_count as comment_count for blog.story blog.quote %}

1.5.6 Filter xtd_comment_gravatar

Filter syntax:

{{ comment.email|xtd_comment_gravatar }}

A simple gravatar filter that inserts the gravatar image associated to an email address.

This filter has been named xtd_comment_gravatar as oposed to simply gravatar to avoid potential name
collisions with other gravatar filters the user might have opted to include in the template.

1.5.7 Filter xtd_comment_gravatar_url

Filter syntax:

{{ comment.email|xtd_comment_gravatar_url }}

A simple gravatar filter that inserts the gravatar URL associated to an email address.

This filter has been named xtd_comment_gravatar_url as oposed to simply gravatar_url to avoid poten-
tial name collisions with other gravatar filters the user might have opted to include in the template.

1.5.8 Filter render_markup_comment

Filter syntax:

{{ comment.comment|render_markup_comment }}

Renders a comment using a markup language specified in the first line of the comment. It uses django-markup to parse
the comments with a markup language parser and produce the corresponding output.

Example usage

A comment posted with a content like:

#!markdown
An [example](http://url.com/ "Title")

Would be rendered as a markdown text, producing the output:

<p>example</p>

Available markup languages are:

• Markdown, when starting the comment with #!markdown.

1.5. Filters and Template Tags 25

http://www.gravatar.com/
http://www.gravatar.com/
https://github.com/bartTC/django-markup
http://daringfireball.net/projects/markdown/syntax

django-comments-xtd Documentation, Release 1.7.1

• reStructuredText, when starting the comment with #!restructuredtext.

• Linebreaks, when starting the comment with #!linebreaks.

1.6 Customizing django-comments-xtd

django-comments-xtd can be extended in the same way as django-contrib-comments. There are three points to observe:

1. The setting COMMENTS_APP must be 'django_comments_xtd'.

2. The setting COMMENTS_XTD_MODEL must be your model class name, i.e.: 'mycomments.models.
MyComment'.

3. The setting COMMENTS_XTD_FORM_CLASS must be your form class name, i.e.: 'mycomments.forms.
MyCommentForm'.

In addition to that, write an admin.py module to see the new comment class in the admin interface. Inherit from
django_commensts_xtd.admin.XtdCommentsAdmin. You might want to add your new comment fields to
the comment list view, by rewriting the list_display attribute of your admin class. Or change the details view
customizing the fieldsets attribute.

1.6.1 Custom Comments Demo

The demo site custom_comments available with the source code in GitHub (directory
django_comments_xtd\demos\custom_comments) implements a sample Django project with com-
ments that extend django_comments_xtd with an additional field, a title.

settings Module

The settings.py module contains the following customizations:

INSTALLED_APPS = (
...
'django_comments_xtd',
'django_comments',
'articles',
'mycomments',
...

)

COMMENTS_APP = "django_comments_xtd"
COMMENTS_XTD_MODEL = 'mycomments.models.MyComment'
COMMENTS_XTD_FORM_CLASS = 'mycomments.forms.MyCommentForm'

models Module

The new class MyComment extends django_comments_xtd’s XtdComment with a title field:

from django.db import models
from django_comments_xtd.models import XtdComment

class MyComment(XtdComment):
title = models.CharField(max_length=256)

26 Chapter 1. Contents

http://docutils.sourceforge.net/docs/user/rst/quickref.html
https://github.com/danirus/django-comments-xtd

django-comments-xtd Documentation, Release 1.7.1

forms Module

The forms module extends XtdCommentForm and rewrites the method get_comment_create_data:

from django import forms
from django.utils.translation import ugettext_lazy as _

from django_comments_xtd.forms import XtdCommentForm
from django_comments_xtd.models import TmpXtdComment

class MyCommentForm(XtdCommentForm):
title = forms.CharField(

max_length=256,
widget=forms.TextInput(attrs={'placeholder': _('title')})

)

def get_comment_create_data(self):
data = super(MyCommentForm, self).get_comment_create_data()
data.update({'title': self.cleaned_data['title']})
return data

admin Module

The admin module provides a new class MyCommentAdmin that inherits from XtdCommentsAdmin and customize
some of its attributes to include the new field title:

from django.contrib import admin
from django.utils.translation import ugettext_lazy as _

from django_comments_xtd.admin import XtdCommentsAdmin
from custom_comments.mycomments.models import MyComment

class MyCommentAdmin(XtdCommentsAdmin):
list_display = ('thread_level', 'title', 'cid', 'name', 'content_type',

'object_pk', 'submit_date', 'followup', 'is_public',
'is_removed')

list_display_links = ('cid', 'title')
fieldsets = (

(None, {'fields': ('content_type', 'object_pk', 'site')}),
(_('Content'), {'fields': ('title', 'user', 'user_name', 'user_email',

'user_url', 'comment', 'followup')}),
(_('Metadata'), {'fields': ('submit_date', 'ip_address',

'is_public', 'is_removed')}),
)

admin.site.register(MyComment, MyCommentAdmin)

Templates

You will need to customize the following templates:

• comments/form.html to include new fields.

• comments/preview.html to preview new fields.

1.6. Customizing django-comments-xtd 27

django-comments-xtd Documentation, Release 1.7.1

• django_comments_xtd/email_confirmation_request.{txt|html} to add the new fields to
the confirmation request, if it was necessary. This demo overrides them to include the title field in the mail.

• django_comments_xtd/comments_tree.html to show the new field when displaying the comments.
If your project doesn’t allow nested comments you can use either this template or comments/list.html‘.

• django_comments_xtd/reply.html to show the new field when displaying the comment the user is
replying to.

1.7 Settings

To use django-comments-xtd it is necessary to declare the COMMENTS_APP setting in your project’s settings module
as:

COMMENTS_APP = "django_comments_xtd"

A number of additional settings are available to customize django-comments-xtd behaviour.

Table of Contents

• COMMENTS_XTD_MAXIMUM_THREAD_LEVEL

• COMMENTS_XTD_MAXIMUM_THREAD_LEVEL_BY_APP_MODEL

• COMMENTS_XTD_CONFIRM_MAIL

• COMMENTS_XTD_FROM_EMAIL

• COMMENTS_XTD_FORM_CLASS

• COMMENTS_XTD_MODEL

• COMMENTS_XTD_LIST_ORDER

• COMMENTS_XTD_MARKUP_FALLBACK_FILTER

• COMMENTS_XTD_SALT

• COMMENTS_XTD_SEND_HTML_EMAIL

• COMMENTS_XTD_THREADED_EMAILS

1.7.1 COMMENTS_XTD_MAXIMUM_THREAD_LEVEL

Optional. Indicates the Maximum thread level for comments. In other words, whether comments can be nested.
This setting established the default value for comments posted to instances of every model instance in Django. It can
be overriden on per app.model basis using the COMMENTS_XTD_MAXIMUM_THREAD_LEVEL_BY_APP_MODEL`,
introduced right after this section.

An example:

COMMENTS_XTD_MAX_THREAD_LEVEL = 8

It defaults to 0. What means nested comments are not permitted.

28 Chapter 1. Contents

https://django-contrib-comments.readthedocs.io/en/latest/settings.html#std:setting-COMMENTS_APP

django-comments-xtd Documentation, Release 1.7.1

1.7.2 COMMENTS_XTD_MAXIMUM_THREAD_LEVEL_BY_APP_MODEL

Optional. The Maximum thread level on per app.model basis is a dictionary with pairs app_label.model as keys
and the maximum thread level for comments posted to instances of those models as values. It allows definition of max
comment thread level on a per app_label.model basis.

An example:

COMMENTS_XTD_MAX_THREAD_LEVEL = 0
COMMENTS_XTD_MAX_THREAD_LEVEL_BY_APP_MODEL = {

'projects.release': 2,
'blog.stories': 8, 'blog.quotes': 8,
'blog.diarydetail': 0 # not required as it defaults to COMMENTS_XTD_MAX_THREAD_

→˓LEVEL
}

In the example, comments posted to projects.release instances can go up to level 2:

First comment (level 0)
|-- Comment to "First comment" (level 1)

|-- Comment to "Comment to First comment" (level 2)

It defaults to {}. What means the maximum thread level is setup with COMMENTS_XTD_MAX_THREAD_LEVEL.

1.7.3 COMMENTS_XTD_CONFIRM_MAIL

Optional. It specifies the confirm comment post by mail setting, establishing whether a comment confirmation
should be sent by mail. If set to True a confirmation message is sent to the user with a link on which she has to click
to confirm the comment. If the user is already authenticated the confirmation is not sent and the comment is accepted,
if no moderation has been setup up, with no further confirmation needed.

If is set to False, and no moderation has been set up to potentially discard it, the comment will be accepted.

Read about the Moderation topic in the tutorial.

An example:

COMMENTS_XTD_CONFIRM_EMAIL = True

It defaults to True.

1.7.4 COMMENTS_XTD_FROM_EMAIL

Optional. It specifies the from mail address setting used in the from field when sending emails.

An example:

COMMENTS_XTD_FROM_EMAIL = "helpdesk@yoursite.com"

It defaults to settings.DEFAULT_FROM_EMAIL.

1.7.5 COMMENTS_XTD_FORM_CLASS

Optional, form class to use when rendering comment forms. It’s a string with the class path to the form class that will
be used for comments.

1.7. Settings 29

django-comments-xtd Documentation, Release 1.7.1

An example:

COMMENTS_XTD_FORM_CLASS = "mycomments.forms.MyCommentForm"

It defaults to “django_comments_xtd.forms.XtdCommentForm”.

1.7.6 COMMENTS_XTD_MODEL

Optional, represents the model class to use for comments. It’s a string with the class path to the model that will be
used for comments.

An example:

COMMENTS_XTD_MODEL = "mycomments.models.MyCommentModel"

Defaults to “django_comments_xtd.models.XtdComment”.

1.7.7 COMMENTS_XTD_LIST_ORDER

Optional, represents the field ordering in which comments are retrieve, a tuple with field names, used by the
get_queryset method of XtdComment model’s manager.

It defaults to ('thread_id', 'order')

1.7.8 COMMENTS_XTD_MARKUP_FALLBACK_FILTER

Optional, default filter to use when rendering comments. Indicates the default markup filter for comments. This value
must be a key in the MARKUP_FILTER setting. If not specified or None, comments that do not indicate an intended
markup filter are simply returned as plain text.

An example:

COMMENTS_XTD_MARKUP_FALLBACK_FILTER = 'markdown'

It defaults to None.

1.7.9 COMMENTS_XTD_SALT

Optional, it is the extra key to salt the comment form. It establishes the bytes string extra_key used by signed.
dumps to salt the comment form hash, so that there an additional secret is in use to encode the comment before
sending it for confirmation within a URL.

An example:

COMMENTS_XTD_SALT = 'G0h5gt073h6gH4p25GS2g5AQ25hTm256yGt134tMP5TgCX$&HKOYRV'

It defaults to an empty string.

1.7.10 COMMENTS_XTD_SEND_HTML_EMAIL

Optional, enable/disable HTML mail messages. This boolean setting establishes whether email messages have to be
sent in HTML format. By the default messages are sent in both Text and HTML format. By disabling the setting, mail
messages will be sent only in text format.

30 Chapter 1. Contents

django-comments-xtd Documentation, Release 1.7.1

An example:

COMMENTS_XTD_SEND_HTML_EMAIL = False

It defaults to True.

1.7.11 COMMENTS_XTD_THREADED_EMAILS

Optional, enable/disable sending mails in separated threads. For low traffic websites sending mails in separate threads
is a fine solution. However, for medium to high traffic websites such overhead could be reduced by using other
solutions, like a Celery application or any other detached from the request-response HTTP loop.

An example:

COMMENTS_XTD_THREADED_EMAILS = False

Defaults to True.

1.8 Templates

This page details the list of templates provided by django-comments-xtd. They are located under the
django_comments_xtd/ templates directory.

Table of Contents

• email_confirmation_request

• comment_tree.html

• user_feedback.html

• like.html

• liked.html

• dislike.html

• disliked.html

• discarded.html

• email_followup_comment

• comment.html

• posted.html

• reply.html

• muted.html

1.8.1 email_confirmation_request

As .html and .txt, this template represents the confirmation message sent to the user when the Send but-
ton is clicked to post a comment. Both templates are sent in a multipart message, or only in text format if the
COMMENTS_XTD_SEND_HTML_EMAIL setting is set to False.

1.8. Templates 31

django-comments-xtd Documentation, Release 1.7.1

In the context of the template the following objects are expected:

• The site object (django-contrib-comments, and in turn django-comments-xtd, use the Django Sites Frame-
work).

• The comment object.

• The confirmation_url the user has to click on to confirm the comment.

1.8.2 comment_tree.html

This template is rendered by the Tag render_xtdcomment_tree to represent the comments posted to an object.

In the context of the template the following objects are expected:

• A list of dictionaries called comments in which each element is a dictionary like:

{
'comment': xtdcomment_object,
'children': [list_of_child_xtdcomment_dicts]

}

Optionally the following objects can be present in the template:

• A boolean allow_flagging to indicate whether the user will have the capacity to suggest comment removal.

• A boolean allow_feedback to indicate whether the user will have the capacity to like/dislike comments.
When True the special template user_feedback.html will be rendered.

1.8.3 user_feedback.html

This template is expected to be in the directory includes/django_comments_xtd/, and it provides a way to
customized the look of the like and dislike buttons as long as the list of users who clicked on them. It is included
from comment_tree.html. The template is rendered only when the Tag render_xtdcomment_tree is used with the
argument allow_feedback.

In the context of the template is expected:

• The boolean variable show_feedback, which will be set to True when passing the argument
show_feedback to the Tag render_xtdcomment_tree. If True the template will show the list of users who
liked the comment and the list of those who disliked it.

• A comment item.

Look at the section Show the list of users to read on this particular topic.

1.8.4 like.html

This template is rendered when the user clicks on the like button of a comment.

The context of the template expects:

• A boolean already_liked_it that indicates whether the user already clicked on the like button of this
comment. In such a case, if the user submits the form a second time the liked-it flag is withdrawn.

• The comment subject to be liked.

32 Chapter 1. Contents

https://docs.djangoproject.com/en/1.11/ref/contrib/sites/
https://docs.djangoproject.com/en/1.11/ref/contrib/sites/

django-comments-xtd Documentation, Release 1.7.1

1.8.5 liked.html

This template is rendered when the user click on the submit button of the form presented in the like.html template.
The template is meant to thank the user for the feedback. The context for the template doesn’t expect any specific
object.

1.8.6 dislike.html

This template is rendered when the user clicks on the dislike button of a comment.

The context of the template expects:

• A boolean already_disliked_it that indicates whether the user already clicked on the dislike button for
this comment. In such a case, if the user submits the form a second time the disliked-it flag is withdrawn.

• The comment subject to be liked.

1.8.7 disliked.html

This template is rendered when the user click on the submit button of the form presented in the dislike.html
template. The template is meant to thank the user for the feedback. The context for the template doesn’t expect any
specific object.

1.8.8 discarded.html

This template gets rendered if any receiver of the signal confirmation_received returns False. Informs the
user that the comment has been discarded. Read the subsection Signal and receiver in the Control Logic to know
about the confirmation_received signal.

1.8.9 email_followup_comment

As .html and .txt, this template represents the mail message sent when there is a new comment following up the
user’s. It’s sent to the user who posted the comment that is being commented in a thread, or that arrived before the one
being sent. To receive this email the user must tick the box Notify me of follow up comments via email.

The template expects the following objects in the context:

• The site object.

• The comment object about which users are being informed.

• The mute_url to offer the notified user the chance to stop receiving notifications on new comments.

1.8.10 comment.html

This template is rendered under any of the following circumstances:

• When using the Tag render_last_xtdcomments.

• When a logged in user sends a comment via Ajax. The comment gets rendered immediately. JavaScript client
side code still has toe handle the response.

1.8. Templates 33

django-comments-xtd Documentation, Release 1.7.1

1.8.11 posted.html

Rendered when a not authenticated user sends a comment. It informs the user that a confirmation message has been
sent and that the link contained in the mail must be clicked to confirm the publication of the comment.

1.8.12 reply.html

Rendered when a user clicks on the reply link of a comment. Reply links are created with XtdComment.
get_reply_url method. They show up below the text of each comment when they allow nested comments.

1.8.13 muted.html

Rendered when a user clicks on the mute link received in a follow-up notification message. It informs the user that
the site will not send more notifications on new comments sent to the object.

34 Chapter 1. Contents

Python Module Index

d
django_comments_xtd, ??

35

django-comments-xtd Documentation, Release 1.7.1

36 Python Module Index

Index

A
ajax, 33

template, 33

C
comment_tree, 32

template, 32
COMMENTS_XTD_CONFIRM_EMAIL

setting, 29
COMMENTS_XTD_FORM_CLASS

setting, 29
COMMENTS_XTD_FROM_EMAIL

setting, 29
COMMENTS_XTD_LIST_ORDER

setting, 30
COMMENTS_XTD_MARKUP_FALLBACK_FILTER

setting, 30
COMMENTS_XTD_MAX_THREAD_LEVEL

setting, 28
COMMENTS_XTD_MAX_THREAD_LEVEL_BY_APP_MODEL

setting, 28
COMMENTS_XTD_MODEL

setting, 30
COMMENTS_XTD_SALT

setting, 30
COMMENTS_XTD_SEND_HTML_EMAIL

setting, 30
COMMENTS_XTD_THREADED_EMAILS

setting, 31
custom, 17

demo, 17

D
Demo

Multiple, 17
Setup, 16
Simple, 17

demo
custom, 17

discarded, 33
template, 33

django_comments_xtd (module), 1

E
email_confirmation_request, 31

template, 31
email_followup_comment, 33

template, 33

F
Features, 1
filter

render_markup_comment, 25
Filters

Templatetags, 21

G
get_last_xtdcomments, 24

tag, 24
get_xtdcomment_count, 24

tag, 24
template tag, 24

get_xtdcomment_tree, 23
tag, 23
template tag, 23

Guide, 3

I
Installation, 5

L
Level, 21

Maximum Thread, 11, 21
Thread, 21

liked, 32, 33
template, 32, 33

M
Maximum

37

django-comments-xtd Documentation, Release 1.7.1

Thread, 21
Thread Level, 11, 21

Moderation, 8
Multiple, 17

Demo, 17
muted, 34

template, 34

N
Nesting

Threading, 11

P
posted, 33

template, 33
preparation, 5

tutorial, 5

Q
Quick

Start, 3

R
render_last_xtdcomments, 23

tag, 23
render_markup_comment

filter, 25
template tag, 25

render_markup_comment, Markdown
reStructuredText, 25

render_xtdcomment_tree, 22
tag, 22
template tag, 22

reply, 34
template, 34

S
setting

COMMENTS_XTD_CONFIRM_EMAIL, 29
COMMENTS_XTD_FORM_CLASS, 29
COMMENTS_XTD_FROM_EMAIL, 29
COMMENTS_XTD_LIST_ORDER, 30
COMMENTS_XTD_MARKUP_FALLBACK_FILTER,

30
COMMENTS_XTD_MAX_THREAD_LEVEL, 28
COMMENTS_XTD_MAX_THREAD_LEVEL_BY_APP_MODEL,

28
COMMENTS_XTD_MODEL, 30
COMMENTS_XTD_SALT, 30
COMMENTS_XTD_SEND_HTML_EMAIL, 30
COMMENTS_XTD_THREADED_EMAILS, 31

Setup
Demo, 16

Signal

Receiver, 20
Simple, 17

Demo, 17
Start

Quick, 3

T
tag

get_last_xtdcomments, 24
get_xtdcomment_count, 24
get_xtdcomment_tree, 23
render_last_xtdcomments, 23
render_xtdcomment_tree, 22

template
ajax, 33
comment_tree, 32
discarded, 33
email_confirmation_request, 31
email_followup_comment, 33
liked, 32, 33
muted, 34
posted, 33
reply, 34

template tag
get_xtdcomment_count, 24
get_xtdcomment_tree, 23
render_markup_comment, 25
render_xtdcomment_tree, 22
xtd_comment_gravatar, 25
xtd_comment_gravatar_url, 25

Templatetags
Filters, 21

Thread
Level, 21
Level, Maximum, 11, 21
Maximum, 21

Threading
Nesting, 11

tutorial
preparation, 5

X
xtd_comment_gravatar, 25

template tag, 25
xtd_comment_gravatar_url, 25

template tag, 25

38 Index

	Contents
	Python Module Index
	Index

